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Summary  
The Family Occupation and Education Index (FOEI) is a school-level socio-
economic index developed by the NSW Department of Education and 
Communities (DEC). The FOEI is based on school-level regression analysis 
of the relationship between the average of standardised students’ 
achievement scores obtained from NAPLAN results and parental background 
variables, which are the level of highest school education, highest non-school 
education and occupation. In developing the 2013 FOEI, the National Institute 
for Applied Statistics Research Australia at the University of Wollongong has 
been contracted to review and provide external validation of the FOEI 
methodology due to the proposed use of the FOEI data in resource allocation.  
For the purpose of this review, a sample of 2012 data was provided by NSW 
DEC to NIASRA. The sample data included approximately 50% of schools 
with all students at the selected schools. Data included, for each de-identified 
student record, student year of schooling, gender, Aboriginal status, reported 
and standardised NAPLAN reading and numeracy results, parent education 
and occupation variables, and a set of school and community variables 
derived from the 2011 ABS census.  
In developing the 2013 FOEI several technical issues associated with missing 
data and regression analysis have been considered and the following 
approaches are recommended to cope with them. 
 

Imputation 

A. Use a model-based multiple imputation approach to reduce bias in 
FOEI arising from missing parental background data 
Data on parents can be missing. This missing data affects the estimation 
of the regression function and the calculation of FOEI scores for individual 
schools. A model-based multiple imputation approach – multiple 
imputations by chained equations (MICE) –  is recommended to deal with 
missing data. This approach uses the relationships between the variables 
in the observed data to impute plausible values for the missing data. This 
is done multiple times (M=10) to enable valid estimates of uncertainty 
accounting for both the regression model estimation and the imputation 
itself. This is a widely adopted and flexible approach that allows the full 
use of the observed data for many variables and can be implemented 
using readily available statistical software (White et al, 2011). As with any 
imputation approach the method is based on some assumptions, including 
the assumption that conditional on the observed data the unobserved data 
are missing at random. The missing at random (MAR) assumption is less 
restrictive than the assumption of Missing Completely at Random (MCAR) 
which is assumed if complete cases, that is students for whom all parental 
data are available, only are used in the analysis.  It is possible that the 
mechanism of missingness is Missing Not at Random (MNAR), however, 
the use of a large number of explanatory variables in the imputation model 
should assist in moving closer to the MAR assumption and therefore 
reduce any possible bias (White et al, 2011).   
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B. Use as many relevant variables as possible to help the imputation 

process  
It is recommended that the parental variables are used along with the 
standardised student achievement scores (when available), ATSI status, 
school remoteness and a set of community variables derived from the 
2011 ABS census including levels of education and occupation of persons 
in the same statistical area (SA1) as the student’s address. These 
community census variables consist of percentages of people/families and 
were calculated for all people or all families in the same area as the 
student’s address.  
The imputation does not explicitly use the school indicator variable, 
although the imputation uses the community variables and therefore 
reflects some characteristics of the local community. Imputation taking into 
account the nesting structure of the data (i.e., students are clustered in 
schools) was not adopted because of concerns about the stability of 
relationships based on small numbers of responding cases in many 
schools. Some of the larger schools would have had sufficient cases to 
consider imputation within the school, but then the models of imputation 
would have differed across schools, which was considered unreliable. 
 

C. Use different imputation models for one parent and two parent 
students 
Some students have one parent and some have two parents in the data 
file. To allow for the use of information on the second parent, the 
imputation is conducted separately for cases where there are data for two 
parents and cases with data for only one parent. The imputation for one 
parent and two parent cases was done separately, on the basis of the 
department’s research that shows the relationship between the parent 
background variables is different for the one parent variables and the 
equivalent variables in the two-parent data file. There is a sufficient 
number of students from both one and two parent families to enable the 
relationships amongst parent variables to be estimated separately for the 
two groups of students.  

D. Use multiple years of NAPLAN data to maximise the number of 
students with available standardised achievement data to help the 
imputation process 
For example, in the sample data provided, standardised NAPLAN reading 
and numeracy results for students in Years 3, 5, 7 and 9 in 2012 were 
used in addition to matched 2011 results for students in Years 4, 6, 8 and 
10 in 2012.  This allowed standardised achievement data to be used, in 
the imputation process for the review, for Years 3 - 10 for students in 
2012.  
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E. Use a different imputation model for students without NAPLAN 

achievement scores 
Students who were exempted from NAPLAN or from cohorts for which 
NAPLAN data does not exist in the review data set (e.g. students in 
Kindergarten, Year 1, and Year 2) are included in the imputation with other 
students but student achievement scores are unavailable and therefore 
not used in the imputation.  
 

Regression Analysis 
F. The FOEI regression model proposed by DEC can be implemented 

using the following approaches: 
• The dependent variable in the regression analysis is based on the 

most recent observed student achievement scores. For the 2013 
FOEI, these are the 2012 NAPLAN reading and numeracy scores, 
standardised and averaged, for students now in Years 4, 6, 8 and 
10 in 2013. 

• The explanatory variables are the school level parental background 
variables (i.e. the percentages of parents in each category of school 
education, non-school education and occupation). These are 
calculated using parental background data for all students in the 
school in 2013, including the imputed values for missing data.  

• The regression analysis uses a dependent variable based on 
observed 2012 student achievement data for students in Year 4, 6, 
8 and 10 in 2013, while the explanatory variables are based on 
parental background variables for all students attending the school 
in 2013. The regression equation is designed to reflect the 
relationship between achievement in the most recent year for which 
achievement data are available and the parental background of 
students. Since calculation of the FOEI score for a school is based 
on the parental background of all students, estimation of the 
regression function also uses these as the explanatory variables.  

• The review considered the inclusion of ABS community variables in 
the regression analysis. Previous regression analysis performed by 
the DEC suggested no appreciable additional predictive power is 
added if the community level variables are used in the school-level 
regression analysis. However, community level variables are useful 
information to help impute for missing parental data.  
 

G. Weighting parental information for students in one parent families  

In the regression estimation and in the production of the FOEI score the 
school-level parental variables effectively average the characteristics of 
the parents in a two-parent case. In order for each student’s family to 
count equally towards the school FOEI score, the calculation of the school-
level variables assigns a weight of 2 to single parents and a weight of 1 to 
each parent in a two-parent family. 
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H. Robust regression is the regression technique recommended to 
construct FOEI scores to deal with outliers 
Analysis of residual patterns from ordinary least squares (OLS) and 
comparisons of OLS, weighted least squares (WLS) and robust regression 
models show that robust regression is a technique that is effective in  
reducing the influence of outliers on the regression estimates. The majority 
of outliers from the OLS analysis are selective schools and small schools. 
However not all small schools are outliers;  in fact the majority of small 
schools fit the regression model reasonably well. Robust regression 
reduces the weight for the outliers, i.e., schools that have large residuals. 
Using robust regression appears to adequately account for both selective 
schools and the small schools with large residuals, and is recommended. 
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1. Introduction 
The Family Occupation and Education Index (FOEI) is a school-level socio-
economic index developed by the NSW Department of Education and 
Communities (DEC). The FOEI is based on school-level regression analysis 
of the relationship between the average of standardised students’ 
achievement scores obtained from NAPLAN results and parental background 
variables, which are the level of highest school education, highest non-school 
education, and occupation. In developing the 2013 FOEI, the National 
Institute for Applied Statistics Research Australia (NIASRA) at the University 
of Wollongong was contracted to review and provide external validation of the 
FOEI methodology due to the proposed use of the FOEI data in resource 
allocation.  
For the purpose of this review, a sample of 2012 data was provided by NSW 
DEC to NIASRA. The sample data included approximately 50% of schools 
with all students at the selected schools. Data included, for each de-identified 
student record, student year of schooling, gender, Aboriginal status, reported 
and standardised NAPLAN reading and numeracy results, parent education 
and occupation variables, and a set of community variables derived from the 
2011 census. In developing the 2013 FOEI several statistical issues 
associated with regression analysis and imputation of missing data have been 
considered and approaches identified to cope with them. 
In section 2 the major methodological issues identified with the regression 
analysis are considered. In section 3 major methodological issues identified 
with the imputation for missing data are considered. In section 4 aspects of 
the interaction between the imputation methodology and the regression 
analysis are discussed. 
The review focussed on the main issues that were considered important for 
the calculation of the 2013 FOEI scores. Not all issues identified were 
examined in detail or empirical analysis conducted because of the limited 
time, data and resources available. However these issues are listed, as they 
may be examined in more detail in the future.  
 

2. Regression Modelling 
In examining the approach to take to the regression analysis the following 
issues were considered: 

• Basics of school-level modelling 

• Implications and interpretation of school-level modelling 

• Use of robust regression methods 

• Use of school achievement data  

• Students with one parent and students with two parents 

• Use of community variables and other variables in the regression 
model. 
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2.1 Basics of School-level Modelling 
The basic statistical model underpinning the FOEI is  

yg = xg
Tβ + eg      (1) 

where for school g; 

• yg  is the average achievement measure for all students in the school, 

• xg  is the vector of means of the explanatory variables calculated for all 
students in the school, 

• eg  is an error or residual term. 

At the school level the explanatory variables are the proportions of parents in 
each category of highest school education, highest non-school education, and 
occupation. 
The school-level achievement measure is calculated by calculating a 
standardised score for reading and numeracy for each student and then 
calculating a simple average of the two standardised scores for each student 
and then averaging these scores across all the students in the school. For a 
particular year the scores are only available for students in years 3, 5, 7 and 
9. The state government schools mean and standard deviation for the 
relevant calendar year, grade cohort, and test domain, is used in the 
standardisation. 

If β̂  is an estimate of the vector of regression parameters then the estimated 
fitted value for school g is  

 
yg = xg

T β̂      (2) 

A simple approach is to estimate β  using ordinary least squares (OLS), 

which will be denoted by β̂OLS . Provided E eg | xg⎡⎣ ⎤⎦ = 0  then β̂OLS is unbiased 

for β . Also, if the variance of the error term is constant, V (eg | xg ) =σ
2 , then 

β̂OLS  is efficient in the sense that it has minimum variance. If the variance is 

not constant, so V (eg ) =σ g
2 , then β̂OLS is still unbiased but not fully efficient 

and a weighted least squares estimate, β̂WLS , which uses weights inversely 

proportional to σ g
2  can be considered. In this case the residuals will have 

different dispersion for different values of the regression term xg
Tβ . 

The FOEI for a school is the fitted value, which is the expected school-level 
achievement based on the parent variables used. The estimated residual term 
is  ̂eg = yg − yg , which reflects how much the school level achievement is 
above or below the expected value for a school with the values of the parent 
variables. 
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2.2 Implications and Interpretation of School-Level 
Regression 
An important feature of model (1) is that it is a school-level model based on 
data aggregated over all the students in the school. Such models are 
sometimes called aggregate or ecological models. There are two 
consequences of the use on an aggregate model that need to be considered: 
the interpretation of the regression term and the structure of the variance of 
the error or residual term. 
In general the estimated regression coefficient obtained from an aggregate 
regression model will be different from the estimate that would be obtained 
from a corresponding analysis of the unit level, in this case student-level, 
data. This difference is sometimes referred to as the ecological fallacy or 
ecological bias. The source of this effect can be explained by considering a 
multilevel regression model for student-level data: 

yig = xig
T β I + xg

TβC + ug + ε ig      (3) 

where for student i in school g; 

• yig is the achievement measure 

• xig is the vector of explanatory variables 

• ε ig  is an individual level error or residual term 

• ug  is a school-level error or residual term 

The elements of the vector of explanatory variables take the values one or 
zero depending on whether the parent belongs to the relevant category or not. 
The model still includesxg , which can be regarded as contextual effect and is 
included so that the impact of the proportion of parents in the various 
categories can be reflected in the regression model. 
Model (3) includes the direct effect of a student’s parent variables on their 
achievement measure, with regression coefficient β I  and the indirect effect of 
the school context as reflected in the school means of the explanatory 
variables, with regression coefficient βC . It also includes an error or residual 
term at the student and school-level. The school level residual reflects the 
impact of unmeasured factors that affect the achievement measure of all 
students in a school that produce a degree of similarity in their achievement. 
Aggregating model (3) leads to  

yg = xg
Tβ I+C + ug + εg      (4) 

where β I+C = β I + βC  and εg =
1
ng

ε ig
i=1

ng

∑ . Model (4) is of the same form as 

model (1) where β = β I+C  and eg = ug + εg  .  
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A standard individual (i.e. student) level regression analysis will effectively 
assume that βC = 0  and β I = β . The estimates of the regression coefficients 
from an aggregate (i.e. school level) and unit (i.e. student) level analysis will 
have the same expectation if βC = 0  otherwise they will differ, which is the 
ecological fallacy. However, this is not a concern for the FOEI since the 
aggregates analysis will produce unbiased estimate of β I+C , which is 
appropriate.  
The aggregate model (4) that arises from (3) makes it clear that the school-
level analysis is reflecting the combined effect of student-level explanatory 
variables and their contextual effects. 
A consequence of model (4) is the variance of the school mean measure 
achievement based on ng  students is 

V (yg | xg ) =σ u
2 + σε

2

ng
     (5) 

Essentially, because the school measure is a mean it will have a component 
of variance that is a function of the inverse of the sample size in the school. 
Hence, we should expect more variation in the school-level measure for 
smaller schools.  

Estimation of σ u
2  and σε

2  would usually be done using unit level, that is 
student level data and using the school indicator. Given the likely existence of 
contextual effects, even a unit level model should include the contextual 
effects xg

TβC . A simple  diagnostic that can be useful in giving some indication 
of the relative size of the variance component can be based on analysis of the 
school-level residuals êg , such as plotting êg

2  against ngor ng
−1 .  

The form of (5) suggests that OLS will be close to efficient if σ u
2  is much 

larger than 
σε
2

ng
 . Alternatively if σ u

2  is much smaller than 
σε
2

ng
 then a weighted 

least squares (WLS) regression estimates, with weight  is more 

appropriate. We can denote this estimate as β̂WLS  . This suggests a useful 
diagnostic is to run OLS and WLS analyses. A formal multilevel modelling 
approach will iteratively estimate the regression coefficient and variance 
component using model (3). It will estimate the regression coefficient 
efficiently and produce valid estimates of standard errors. To avoid unit level 
modelling we can note that (5) can be rewritten as  

V (yg | xg ) =σ
2 1− ρ

ng
+ ρ

⎛

⎝⎜
⎞

⎠⎟
     (6) 

Here ρ =σ u
2 σ u

2 +σε
2( )  is the intra-class correlation, which is the correlation 

between the achievement measure for students in the same school due to the 
unmeasured factors reflected in ug .  A WLS school-level analyses can then be 
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carried out using weights obtained as the inverse of (6) for a reasonable value 
of ρ , perhaps obtained from analysis of the school-level residuals. 

In practice the different weights that can be used may not affect the estimates 
of the regression coefficients appreciably, although they may affect the 
estimated standard errors (SEs). However, recognising the variance structure 
reflected in (5) can be important for identification of outliers and in producing 
confidence intervals associated with the FOEI for individual schools.  
If the OLS and WLS estimates differ appreciably, this may be an indication 
that the school size, as reflected by ng , is playing a role in the school-level 
achievement measure. This possibility can be easily checked by putting this 
term directly in the systematic part of the regression model. If an effect of size 
is found, it may partly be acting as a proxy for other potential school-level 
variables. The substantive and policy implications of including such a term in 
the FOEI need to be carefully considered. More generally there may be a 
number of school-level variables that have an effect on the school-level 
performance measure. The impact of school size is of particular interest 
because of its potential effect on the residual variance, but other school-level 
variables may also have explanatory power. We will denote such variables in 
general as zg

SC , which could be added to the systematic part of the regression 
model in (1). 
Because the dependent variable in the regression analysis is the mean of 
student achievement scores it should be expected that the variance of the 
school achievement score around the fitted regression function would 
increase as the number of students contributing to the calculation of the 
average gets smaller. Plots of residuals obtained from a regression analyses 
undertaken by NSW DEC confirm this feature, particularly for schools for 
which the average achievement score is based on 20 or fewer students as 
shown in Appendix C. Use of simple weighted least squares (WLS) regression 
was considered to account for this feature, with the weight proportional to the 
number of students contributing the school average. The optimal weighting 
depends on the ratio of the school-level variance to the student-level variance.  
As mentioned above the theoretical optimal weighting of schools in terms of 
the effect on the estimated regression coefficient depends on the school level 
and student level variance component in the multilevel model (3). From (6) we 
can see that the key parameter affecting the optimal weighting is ρ.  Results 
from multilevel modelling suggest a value of ρ  of about 0.06. At this value of 
ρ  using WLS with weighting by ng  overcompensates for the variance of the 

residual increasing as ng  gets smaller. For example, it would lead to a school 
with 200 students receiving a weight 10 times that of a school with 20, 
whereas the school-level and student-level variance components obtained 
from a multilevel modelling suggests a ratio of about 1.7. Thus the equal 
weighting of each school implicit in OLS is closer to the optimal weighting than 
WLS using ng . There are also substantive reasons to prefer OLS as each 
school is equally important and the FOEI should be equally applicable to all 
schools. The issue of large residual variation for smaller schools can be 



 10 

tackled through careful treatment of outliers or robust regression as discussed 
in section 2.3. 
The variance on the FOEI score for a school is  

 V ( yg | xg ) = xg
TV (β̂ )xg      (7) 

Estimates of  V ( yg | xg ) can then be used to construct 95% confidence 
intervals for the FOEI score. The confidence intervals should have the usual 
feature of being wider at the lower and higher ends of the range of 
explanatory variables. 
The variance of the fitted value is different from the variance of the observed 
residual  rg = yg − yg  which is 

 
V (yg − yg ) ≈V (yg )+V ( yg ) =σ u

2 + σε
2

ng
+ xg

TV (β̂ )xg    (8) 

The latter is relevant in interpreting the average performance measure for a 
particular school. However this is not the objective of the FOEI. 
Common diagnostics involve the studentised residual, which should be 
calculated as 

srg =
rg
V̂ (rg )

     (9) 

Estimation of V (β̂ )  raises some subtle issues. If OLS or WLS is used then 

the standard variance estimator will assume the variance structure is σ u
2  or 

σε
2 ng  respectively. It is possible to use OLS even if we think that the 

variance structure follows (5) and then use so called “Huber- White” (HW) 
variance estimator, which is robust to the form of the residual variance.  
 

2.3 Use of Robust Regression Methods 
In any regression analysis it is important to examine the results and 
associated diagnostics for outliers, influential and high leverage points and 
multicollinearity. It is expected that there will be more variation around the 
fitted regression function for small schools as suggested by (5). Hence naive 
examination of residuals from an OLS analysis will identify many small 
schools as outliers, when they are consistent with the variance structure. An 
option is to use the studentised residual (9) where V (β̂ )  , σ u

2  and σε
2  have 

been estimated using multilevel modelling or using the HW variance estimator 
for the variance of the regression coefficients. 
More formal use of robust regression methods can be considered. Such 
methods involve a reduction the weight given to observations with relatively 
large estimated residuals. This approach itself can be sensitive to the 
estimation of the scale factors and led to MM-estimation. This approach is 
available in R, which includes the option of specifying prior weight, which in 
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our case would be the school sample size, ng . We can also specify the type 
of weight, which is essentially a frequency weight or the inverse variance 
weight, which is relevant for our analyses. 
Because of the time involved in deciding the precise approach to and 
implementing multiple imputation (MI), it is easier to try different approaches 
with the complete case data rather than the MI data. The key feature of 
different approaches to the regression analysis will be clear from such an 
analysis. To obtain a base to which the result of the MI can be compared and 
to help in familiarisation of the model a large range of regression analyses 
based on the complete data could be carried out. The full range of analyses 
is: 

• OLS, with and without outliers deleted, and H-W variance estimation 

• WLS, with and without outliers deleted 

• Multilevel model of student level data 

• Robust regression, unweighted 

• Robust regression, weighted (does not seem to be available in STATA) 

Analysis of residuals for OLS should be based on srg  given by (9), where the 
results of the multilevel model can be used to give an idea of the variance 
components. The residuals from the WLS will effectively use srg  with σ u

2 = 0  
. Besides the usual methods of evaluating regression models, the substantive 
difference between the FOEI score obtained from different analyses can be 
compared overall and at the school level. 
The analysis focussed on the following options: 

• OLS, without outliers deleted (OLS1)  

• OLS, with outliers deleted (OLS2) 

• WLS, without outliers deleted (WLS3) 

• WLS, with outliers deleted (WLS4) 

• Robust regression, unweighted (RR) 
The analyses were carried out by NSW DEC using 2012 data. The analysis of 
RR included selective schools while the other methods did not. 
Outliers were defined as those schools for which the absolute value of the 
studentised residual exceeded 2. The evaluation of H-W variance estimation 
was not seen as a priority as there is not a focus on inference about the 
regression coefficients and the MI approach will give variance estimates that 
account for the imputation process. Multilevel modelling is useful in informing 
us about variance comments, as we saw in section 2.2, but it is not a school-
level approach, which is the currently preferred approach. As use of weights is 
not strongly justified in WLS it was not considered in robust regression. 
The Robust Regression (RR) implemented in Stata includes an initial step that 
removes high-leverage outliers (based on Cook’s D) and then uses an M-
estimator (Huber followed by bisquare) to estimate weights for observations 
based on the size of the residuals.  
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In the robust regression 52 schools have a zero-weight, of which 31 had a 
NAPLAN count of less than 20. Only one of the 21 schools with zero weight 
and NAPLAN count greater than 20 is a comprehensive school; all others are 
fully selective schools.  
Of the top 100 schools that have the greatest weights, 7% of them are small 
schools (i.e., schools with less than 20 NAPLAN students).  
As expected, those observations with large studentised residual (SRED) 
(roughly greater than 3) have been given a weight of zero. Weights then 
increase as the size of the SRED decreases. Many small schools fit the 
regression model reasonably well, with weights from robust regression for 
these schools ranging from 0.8 to 1.0. 
The analysis undertaken by NSW DEC showed the following features: 

• While WLS (weighted by NAPLAN cohort size) and OLS1 models have 
produced negative (hence counter-intuitive) coefficients for the highest 
occupation category variable ‘percentage of parents in senior 
management’, the RR model has corrected the direction of the 
coefficient. Presumably this is because the effects of the influential 
data points have been weighted down during the robust regression 
estimation process.  

• Of the three types of models, generally speaking, coefficients from OLS 
and RR models are more similar to each other than they are to those 
from WLS models.  

• Predicted values from RR are extremely similar to those produced from 
OLS2 model.  

• Coefficients from WLS models are more difficult to justify for use in the 
final FOEI model. For example, the negative coefficients associated 
with % of parents not in a paid work are much greater in size from the 
WLS models than from the OLS or RR models. In addition, while WLS 
models have estimated a relatively large coefficient for the percentage 
of parents achieving a Year 10 education level, the equivalent 
coefficients from OLS models and RR models are small and negative, 
which make sense.  

• On the whole, coefficients from RR and OLS models make more sense 
than those from WLS. This is probably because the weighting by 
NAPLAN cohort size in the WLS models essentially means that all 
small schools are given a smaller weight than large schools. However, 
the OLS residual analysis demonstrates that, while most of the outliers 
(those with studentised residuals more than 2) are small schools, not 
all small schools are outliers. In fact, the majority of small schools (355 
out of 439) are not outliers. They fit the model pretty well. Around 7% of 
the top 100 schools with the greatest weights from the robust 
regression modelling are small schools.  

• By imposing a smaller weight for all small schools through WLS or 
excluding them, the influence of the majority of small schools, which do 
fit the regression model quite well has been unjustifiably reduced.  

In summary, comparisons of ordinary least squares (OLS), WLS and robust 
regression models show that while most outliers are small schools, the 
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majority of small schools fit the regression model reasonably well. Robust 
regression reduces the weight for the outliers, that is, schools that have large 
residuals. Using robust regression appears to adequately account for the 
small schools with large residuals, while also allowing most small schools to 
contribute to the estimation of the regression coefficients. An alternative is an 
OLS model excluding selective schools and outliers for the final FOEI model. 
An important feature of robust regression is that it enables the use of data for 
schools with enrolment less than 100, which were previously excluded from 
the regression analyses. 
An issue is whether or not to exclude selective schools from the regression 
estimation because of their special nature. A FOEI score can still be 
calculated for these schools using the estimated regression function. As the 
analysis carried out shows, if such schools are included in a robust regression 
their residuals lead to them being given zero weight anyway, hence they do 
not need to be manually excluded. 
The issue of including community variables in the regression model and the 
different approaches to incorporating data for two parents are considered in 
sections 2.6 and 2.5 respectively.  
In addition to the estimation of the variance of the FOEI score discussed in 
section 2.2, the results can be analysed by comparison with the FOEI that 
would be obtained by: 

• Using OLS on the data obtained from the observed cases; 

• Using OLS based on the observed + imputed data obtained using 
imputation 

• Robust regression based on the observed cases. 
This comparison should give a picture of the impact of the imputation and use 
of robust regression on the FOEI scores. Results of such analyses will be 
published through the DEC FOEI technical report.  
Further research investigating the advantages and disadvantages of an 
explicit multilevel modelling approach using models of the form of (3) can also 
be undertaken for future years. 
 

2.4 Use of School Achievement Data  
The final regression analysis will use a dependent variable based on 
observed 2012 student achievement data for students in Year 4, 6, 8 and 10 
in 2013, while the explanatory variables will be based on parental background 
variables for all students attending the school in 2013. The regression 
equation is designed to reflect the relationship between achievement in the 
most recent year for which achievement data are available and the parental 
background of students attending the school in current year. Since calculation 
of the FOEI score for a school is based on the parental background of all 
students, estimation of the regression function also uses these as the 
explanatory variables.  
Ideally student achievement data would be available for all students in the 
school. One way to consider this issue is to consider the mean that would 
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have been obtained had students in all years been tested, yg
all . Then we can 

regard the actual means available as an estimate of this mean, with an 
associated measurement error, so that yg = yg

all +ηg . The theoretical 
implications of this measurement error formulation could be considered in 
future research. 
An indirect indication of the impact of the dependent and explanatory 
variables being based on different sets of students could be obtained by 
estimating the regression coefficient using explanatory variables calculated 
just for the student cohorts for which achievement data are available. Using 
the resulting estimated regression coefficients the fitted value for a school 
would be calculated using the explanatory variables calculated for all students 
or only those for which achievement data are available, and then compared. 
An option considered was using achievement scores for previous years for 
the dependent variable. This was not used since it would lead to the FOEI not 
reflecting the latest achievement data. Another option considered was the 
inclusion of imputed achievement data in the dependent variable, for students 
where achievement data was not available. It was considered that such 
inclusion, though would have led to most achievement data being imputed, 
and would generate a degree of circularity, since the imputed achievement 
data is based on the explanatory variables that would subsequently be used 
in the regression analysis. This approach would tend to reproduce the 
relationship between achievement score and the parent variables for the 
years in which the former are available. For this reason, the dependent 
variable in the regression model only includes the observed latest years’ 
achievement data for each school.   
 
2.5 Students with one parent and students with two parents 
Some students have data for one parent and some have data for two parents 
in the data files. If there is no information for a second parent in the enrolment 
system, it may be assumed that the student is from a one-parent family. In the 
sample data file provided these students have null values for the second 
parent variables (as distinct from students with information on two parents in 
the enrolment system but where the education and occupation variables for 
the second parent are all coded as ‘not stated’). 
Several approaches are available in the school-level regression modelling to 
deal with the parental contribution from students of different family types. 

I. Calculate the school means over all parents. 
II. Calculate the school means over all parents, giving each of the parents 

in a two-parent case a weight of 0.5. 
III. Only use parent 1 from a two-parent case. 
IV. Calculate the means for the one-parent variables separately to the 

means for the parent 1 and parent 2 variables for the two-parent cases, 
and put each into the regression model.  

Remember that the school means are effectively proportions in each category 
of the parent variables.  



 15 

Option I gives more weight to the parent variables for students with two 
parents, whereas option II effectively weights each student equally. Option III 
discards potentially useful information. Option IV is theoretically the best as it 
makes full use of the parent data, but triples the number of explanatory 
variables, which can affect the stability of the estimated regression 
coefficients. Comparison of options II and IV is an area for future research. 
It was decided that in order for each student’s family to count equally towards 
the school FOEI score, the calculation of the school-level variables assigns a 
weight of 2 to single parents and a weight of 1 to each parent in a two-parent 
family. Thus in the regression estimation and in the production of the FOEI 
score the school-level parental variables effectively average the 
characteristics of the parents in a two-parent case, which is option II.  
 

2.6. Use of Community Variables and Other Variables in the 
Regression Model 
The FOEI is specifically designed to account for the available data on the 
parents of students in the school. Other variables could be included in the 
regression model but would change the substantive interpretation of the FOEI 
and therefore not pursued here. Use of additional variables in the imputation 
process is considered in section 3, since a general principle is to use as many 
variables as reasonable in the imputation modelling, including all variables to 
be used in regression analysis. 
The potential for school-level variables to be included in the regression 
modelling was briefly mentioned in section 2. It is also possible to use 
community level variables. For each student the value of up to 16 variables 
can be determined for the SA1 in which they live. School-level means for 
these variables can be obtained by averaging over all the students in the 
school, to produce measures of the community in which students live. We will 
denote these variables as zg

COM . Because address is an important variable 
there is very little missing data in the data used to calculate the community 
variables. The obvious way to use the community variables is to expand the 
regression model to include them. 
There are substantive considerations involved with including such variables in 
the regression modelling in the calculation of the FOEI.  
Another suggestion that has been made is to undertake two separate 
regressions, i.e. using xg  and one using zg

COM  and then use the fitted value 
that is closest to the observed value. The statistical properties of this 
approach are not clear. 
The regression analysis used only the parental background variables and not 
the community variables. Previous regression analysis performed by the DEC 
suggested no appreciable additional predictive power is added if the 
community level variables are used in the school-level regression analysis. 
However, community level variables are useful information to impute for 
missing parental data.  
Indicators of ATSI status and school remoteness could also be included in the 
regression model, but were not included for substantive reasons. Again such 
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variables can be used in the imputation model.  

 
3. Handling Missing Parent Data 
Data on parents can be missing (in the data file, missing data is coded as “Not 
stated”). This missing data affects the estimation of the regression function 
and the calculation of FOEI scores for individual schools. A major issue is that 
there is an appreciable amount of missing parent data, which affects the 
calculation of xg . The parent level data are used in the estimation of the 
regression coefficients and in the calculation of the FOEI score.  

 
3.1 Approaches for Handling Missing Data 
Missing data on the three parental background variables: highest level of 
school education, highest non-school education and occupation group, may 
affect the estimation of the regression coefficients and the calculation of the 
FOEI for a school.  
Several approaches could be considered. 

1. Estimate the regression coefficients and calculate the FOEI using only 
complete cases for which all explanatory variables are available. 

2. Estimate the regression coefficients and calculate the FOEI using only 
complete cases for each explanatory variable separately. 

3. Estimate the regression coefficients using only complete cases for 
which all explanatory variables are available but calculate the FOEI 
including values imputed for the missing values. 

4. Estimate the regression coefficients and calculate the FOEI including 
values imputed for the missing values. 

Approach (1) leads to an appreciable reduction in the number of students on 
which school means are based and those that are used may lead to biased 
values. Approach (2) reduces these problems somewhat, but the basic 
problems remain and the means for different variables are based on different 
sets of students. Approach (3) has some value, but leads to the regression 
model using explanatory variables with different values in the estimation of the 
regression coefficients and the calculation of the FOEI. Approach (4) 
maximises the use of the observed data and uses the same values of the 
school means in the estimation of the regression coefficients and the 
calculation of the FOEI, therefore is used in the calculation of 2013 FOEI. 

Imputation can be implemented using multiple imputation (MI) based on a 
chained equation approach. For a student each missing variable will be 
imputed using all the other observed variables, including the response 
variable, the other explanatory variables to be used in the regression model, 
plus several additional variables. The imputation is applied at the student level 
and then the resulting imputed and observed data, which is called the 
completed data is used to calculate school-level means that are then used in 
the estimation of the regression coefficients. 
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Multiple imputation, its related assumptions and benefits, are described in the 
following section. Issues affecting the imputation in this context will be 
considered in subsequent sections. 
 

3.2 Multiple Imputation (MI) 
A model-based multiple imputation approach has been evaluated using 
multiple imputations by chained equations (MICE). This approach uses 
statistical models that reflect the relationships between the variables in the 
observed data to impute plausible values for the missing data. These 
statistical models are referred to as the imputation model. The imputation is 
carried out multiple times (M=10) to enable valid estimates of uncertainty 
accounting for both the regression model estimation and the imputation itself. 
This is a widely adopted and flexible approach that allows the full use of the 
observed data for many variables that can be implemented using readily 
available statistical software (White et al, 2011).  
As with any imputation approach the method of MI is based on some 
assumptions, including the assumption that conditional on the observed data 
the unobserved data are missing at random. This missing at random (MAR) 
assumption is less restrictive than the assumption of Missing Completely at 
Random (MCAR) which is assumed if complete cases, that is students for 
whom all parental data are available, only are used in the analysis.  It is 
possible that the mechanism of missingness is Missing Not at Random 
(MNAR), however, the use of a large number of explanatory variables in the 
imputation model should assist in moving closer to the MAR assumption and 
therefore reduce any possible bias (White et al, 2011).   
A major benefit of using MI is that it enables the variance contributed by the 
imputation process to be included in the estimation of the variance of the 
estimated parameter. For a parameter θ , let θ̂m  be the estimated value 
calculated from the mth completed data set. Then by applying Rubin’s rules 
(Rubin, 1987) 

θ̂ MI = 1
M

θ̂m
m=1

M

∑      (10) 

is the MI estimator and its variance is estimated by 

V (θ̂ MI ) = V̂ + M +1
M

B̂     (11) 

where V̂ = 1
M

V̂ (θ̂m )
m=1

M

∑  and B̂ = 1
M −1

θ̂m −θ̂
MI( )

m=1

M

∑
2

. 

This approach can be applied to the estimation of the regression parameters, 
so θ = β , and the FOEI score, so θ = xg

Tβ .  An overview of the process is 
shown in Figure 1. 
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Figure 1: Overview of multiple imputation and resulting analysis using Rubin’s 
rules. 
Application of MI to the FOEI score required that the imputation is applied 
simultaneously to the regression coefficient and the school means of the 
explanatory variables. This means that 

 
yg
MI = 1

M
ygm = 1

Mm=1

M

∑ x̂gm
T β̂m

m=1

M

∑
    

(12) 

This value is not the same as applying the MI estimate of the regression 
coefficient to the MI estimate of the school means, i.e.  

yg
MI (1) = x̂g

MIT β̂MI  . It is 
also not necessarily the same as the fitted value that would be obtained from 

regression using the MI estimate of school means, x̂g
MI = 1

M
x̂gm

m=1

M

∑ , as the 

explanatory variables, which we can denote by  
yg
MI (2) . For discussion with 

school principals there will naturally be interest in the imputed values of the 
school means of the explanatory variables, which is just x̂g

MI . For this reason, 

NSW DEC used  
yg
MI (2) , which is based on using x̂g

MI as independent 
variables, in the FOEI calculation process, as it allows the department to 
better explain the school level means of the explanatory variables and the 
associated weights that are used to calculate FOEI to the principals. Further 
work remains to examine the practical differences in the fitted values,  

yg
MI , 

produced from equation (12) and  
yg
MI (2) . 

 

3.3 One and two-parent families 

As explained in Section 2.5, some students have data for one parent and 
some have data for two parents in the data files. Students with null values for 
the second parent variables (reflecting the absence of a second parent in the 
enrolment system) may be assumed to be from a one-parent family. These 
students are distinct from students with information on two parents in the 
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enrolment system but where the education and occupation variables for the 
second parent are all coded as ‘not stated’ in data files provided. 
It was considered important to distinguish between one and two-parent 
families in the imputation model so as not to impute for a second parent in a 
one-parent family and to also allow for the use of information on the second 
parent in a two-parent family. The imputation for one-parent and two-parent 
data was therefore carried out separately, on the basis that the relationship 
between the parent background variables is different for the one parent 
variables and the equivalent variables in the two-parent data file, as was 
demonstrated by the department’s own analysis. 
The data file was separated into two data sets, based on a set of null values 
for all of the second parent variables, and imputation carried out separately.  
There is a sufficient number of students from both one and two-parent families 
to enable the relationships amongst parent variables to be estimated 
separately for the two groups of students.  
For the purpose of the review, any student who had missing (‘not stated’) 
values on all six of the parent background variables (around 5% of the 
students in the sample data set) was deleted from the data used for the 
imputation.  
 
3.4 The multiple imputation model 
MI is based on estimating the relationship between variables using cases (i.e. 
students) for which the variables are available. The set of variables in the 
imputation model should be larger and broader in scope than that required for 
the ultimate analytic model that will be applied to the completed data set 
(Heeringa et al, 2010, section 11.4).  So the imputation model is a key 
element of MI and should include all the covariates that may be in the analysis 
model and in particular must contain the analysis model outcome variable 
(Moons et al, 2006). 
For the purpose of this review, a sample of 2012 data was provided by NSW 
DEC to NIASRA. The sample data included approximately 50% of schools 
with all students at the selected schools. Data included student year of 
schooling, selective school category, gender, Aboriginal status, reported and 
standardised NAPLAN reading and numeracy results, parent education and 
occupation variables, and a series of community variables derived from the 
2011 ABS census. The schools are categorised as fully selective, partially 
selective and non-selective.   
In the imputation process, plausible values for the missing data were imputed 
for the three categorical parental background variables, for which details are 
given below. For students belonging to single parent families, there are three 
parental background variables included in the MI model.  For the two-parent 
cases, there are two of each of the variables described below: one set for 
parent 1 and another set for parent 2.  Hence, for the students belonging to 
two-parent families, the imputation was carried out for each of the six 
variables.  

• Parent highest education level  
o Year 9 or equivalent or below; 



 20 

o Year 10 or equivalent; 
o Year 11 or equivalent; 
o Year 12 or equivalent. 

• Parent highest non-school education level; 
o No non-school education; 
o Certificate I to IV (including trade certificate); 
o Advanced diploma or diploma; 
o Bachelor degree or above.  

• Parent occupation group 
o Senior management; 
o Other business manager, arts/media/sport; 
o Tradesperson, clerks, sales and service; 
o Machine operators, hospitality staff etc.; 
o Not in paid work.  

The model includes the parental background variables along with the 
combined standardised student achievement scores for numeracy and 
literacy, ATSI status, school remoteness and a set of ten community variables 
derived from the 2011 ABS census in the same statistical area (SA1) as the 
student’s address.  The imputation excluded students from fully selective 
schools.   
The original variable for the ATSI status of the student had five categories: 

• ATSI status (original) 
o Aboriginal but not Torres Strait Islander Origin 
o Torres Strait Islander but not Aboriginal Origin 
o Both Aboriginal and Torres Strait Islander Origin 
o Neither Aboriginal nor Torres Strait Islander Origin 
o Not stated/Unknown 

The first three categories were collapsed into one category to form the revised 
ATSI variable used in the imputation models: 

• ATSI status (revised) 
o Aboriginal and/or Torres Strait Islander Origin 
o Neither Aboriginal nor Torres Strait Islander Origin 
o Not stated/Unknown 

The remoteness of the school using the MCEECDYA remoteness 
classification with the following three categories:  

• Remote_code 
o Metropolitan 
o Provincial 
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o Remote (including Very Remote) 
The ten census variables were chosen based on previous analysis carried out 
by DEC, and consist of the following variables: 

1) Percentage of people with annual household income between $10400 
and $20799 (INC_BET 10400_20799). 

2) Percentage of people 15 years and over with advanced diploma or 
diploma qualifications (TE_DIPLOMA). 

3) Percentage of people 15 years and over with no post-school 
qualifications (TE_NONE). 

4) Percentage of people 15 years and over whose highest level of 
schooling completed is Year 11 or lower (SE_Y11_LOWER). 

5) Percentage of people in the labour force who are unemployed 
(LABOUR_UNEMP). 

6) Percentage of employed people who work in a skill level 1 occupation 
(high) (OCC_GRP1_HIGH). 

7) Percentage of employed people who work in a skill level 4 occupation  
(mid) (OCC_GRP4_MID). 

8) Percentage of employed people who work in a skill level 5 occupation 
(low) (OCC_GRP5_LOW). 

9) Percentage of occupied dwellings with no internet connection 
(INTERNET_NONE). 

10)  Percentage of families that are one-parent families with dependent 
offspring only (SINGLE_P_VS_FAMILY_C). 

The choice of the census variables to include in the imputation model is an 
issue that could be considered for further research in this context.     
For approximately 5% of cases, an SA1 could not be matched to student 
address and therefore items on the community variables are missing for some 
students.  Thus, the community variables used as explanatory or independent 
variables in the imputation model may contain missing values.  In Stata, the 
imputation model can proceed (if the `force’ option is specified), however, 
missing data on the parent variables will not be imputed for these cases and a 
listwise deletion approach is adopted. 
It is recommended that quality checking of student addresses and subsequent 
matching to SA1 geographic codes be carried out in preparation for the 
imputation in order to minimize any missing items in the explanatory variables.  
Consideration was also given to the inclusion of additional variables in the 
imputation model. These additional variables included the students’ grade (or 
year level) and sex. As there was no practical or theoretical basis on which to 
suggest that students’ grade and sex are likely to be predictive of parental 
background information, or the relationships between parental background 
information and the other variables, these additional variables were not 
included in the imputation model.  
An ordinal logistic model is applied for the imputation of the two ordinal 
variables: Parent highest education level and Parent highest non-school 
education level.  As the Parent occupation group is considered as a nominal 
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variable rather than an ordinal variable, a multinomial logistic model is applied 
for the imputation of the missing values for this variable. No scoring of 
categories was used. 
To evaluate different multiple imputation models, the multiple imputation for 
the parent background variables was carried out for the review sample data 
using three different models, which are described below.  Table 1 and Table 2 
set out the details for the imputation models used for the single and two-
parent cases respectively. The dependent variable is the variable for which 
item-missing data will be imputed.  The explanatory or predictor variables are 
variables that will improve the precision and accuracy of the imputation of 
item-missing data (Heeringa et al, 2010, section 11.4.1) such as ATSI status 
and remoteness. These should also include any variables to be used in the 
analytic (i.e. regression) model, such as the student mean of achievement 
scores, and the parent background variables. Other variables which are likely 
to predict the propensity for response, such as census variables in this 
context, will help to reduce any bias associated with the assumed MAR data 
mechanism (Heeringa et al, 2010, p352).   
As can be seen from Tables 1 and 2, the three models include different sets 
of explanatory variables. Model 1 includes all the parent variables and student 
means of achievement scores, model 2 adds the 10 community variable 
obtained from the census and model 3 adds ATSI status and an indicator of 
the remoteness of the school. Model 1 is the simplest to Model 3 having the 
most explanatory variables. 

 
Table 1:  Single parent cases: details of the imputation models for the parent 
background variables. 

Dependent 
variable  

Model Explanatory variables 

Model 1 
 

  

Model 2 10 Census 
variables 

 

PG1_ 
School_Educ  

Model 3 

PG1_NonSchool_Educ
PG1_Occ_Group StudMean 

10 Census 
variables 

ATSI 
Remoteness 

Model 1 
 

  

Model 2 10 Census 
variables 

 

PG1-
NonSchool_Educ 

Model 3 

PG1_School_Educ 
PG1_Occ_Group StudMean 

10 Census 
variables 

ATSI 
Remoteness 

Model 1 
 

  

Model 2 10 Census 
variables 

 

PG1_Occ_Group 

Model 3 

PG1_School_Educ 
PG1_NonSchool_Educ  StudMean 

10 Census 
variables 

ATSI 
Remoteness 
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Table 2:  Two-parent cases: details of the imputation models for the parent 
background variables. 

Dependent 
variable  

Model Explanatory variables 

1st Parent   
Model 1 
 

  

Model 2 10 Census 
variables 

 

PG1_ 
School_Educ  

Model 3 

PG1_NonSchool_Educ
PG1_Occ_Group 
 
PG2_School_Educ 
PG2_NonSchool_Educ  
PG2_Occ_Group 

StudMean 
 

10 Census 
variables 

ATSI 
Remoteness 

Model 1 
 

  

Model 2 10 Census 
variables 

 

PG1-
NonSchool_Educ 

Model 3 

PG1_School_Educ 
PG1_Occ_Group 
 
PG2_School_Educ 
PG2_NonSchool_Educ  
PG2_Occ_Group 

StudMean 

10 Census 
variables 

ATSI 
Remoteness 

Model 1 
 

  

Model 2 10 Census 
variables 

 

PG1_Occ_Group 

Model 3 

PG1_School_Educ 
PG1_NonSchool_Educ 
 
PG2_School_Educ 
PG2_NonSchool_Educ  
PG2_Occ_Group 

StudMean 

10 Census 
variables 

ATSI 
Remoteness 

2nd Parent      
Model 1 
 

  

Model 2 10 Census 
variables 

 

PG2_ 
School_Educ  

Model 3 

PG1_School_Educ 
PG1_NonSchool_Educ  
PG1_Occ_Group 
 
PG2_NonSchool_Educ 
PG2_Occ_Group 

StudMean 

10 Census 
variables 

ATSI 
Remoteness 

Model 1 
 

  

Model 2 10 Census 
variables 

 

PG2-
NonSchool_Educ 

Model 3 

PG1_School_Educ 
PG1_NonSchool_Educ  
PG1_Occ_Group 
 
PG2_School_Educ 
PG2_Occ_Group 

StudMean 

10 Census 
variables 

ATSI 
Remoteness 

Model 1 
 

  

Model 2 10 Census 
variables 

 

PG2_Occ_Group 

Model 3 

PG1_School_Educ 
PG1_NonSchool_Educ  
PG1_Occ_Group 
 
PG2_School_Educ 
PG2_NonSchool_Educ  

StudMean 

10 Census 
variables 

ATSI 
Remoteness 

 
3.5  Schools as clusters 
The imputation does not explicitly use the school indicator variable, although 
the imputation uses the community variables and therefore reflects some 
characteristics of the local community. Imputation taking into account the 
nesting structure of the data (i.e., students are clustered in schools) was not 
adopted because of concerns about the stability of relationships based on 
small numbers of responding cases in many schools. Some of the larger 
schools would have had sufficient cases to consider imputation within the 
school, but then the methods of imputation would have differed across 
schools, which was considered unreliable. 
The imputation can be done within strata, which effectively means putting 
strata and the interaction of strata within each explanatory variable in the 
model. An option would be to put only main effects in the imputation model. 
Each school could be considered as a stratum, which allows the relationship 
between the variable to vary between schools. It also means the relations will 
be estimated using the data for each school separately.  
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The multilevel structure of the data is an issue to be considered for further 
research concerning imputation in this context.  
 

3.6 Availability of school achievement data for students for 
several years 
The standardised score used in the imputation for a student is the average of 
the standardised NAPLAN reading and numeracy scores if both are available; 
otherwise if only one is available, that score is used. Standardising is based 
on the NSW government means and standard deviations and is performed 
separately for each grade or year level cohort. For a particular calendar year 
student achievement data for NAPLAN are not available for all students in all 
years; only students in Years 3, 5, 7 and 9 are tested in any given calendar 
year.  

There are three approaches to dealing with this issue in the imputation 
process. 

a. Use the latest year’s achievement data in the imputation models (eg 
use 2012 achievement data for the imputation of parental data in 
2013).  

b. Expand option (a) to include achievement data from the previous years 
to increase the number of students whose missing parental information 
can be imputed. 

c. Use option (b), and to further increase the number of students whose 
missing parental information can be imputed, impute the achievement 
data for the cohorts for which achievement data are not available. 

If Option (a) were adopted, only two-sevenths of the students in a primary 
school and one-third of the students in a secondary school would be included 
in the imputation modelling.  As a result, missing parent data would not be 
imputed for the large majority of students.  This would have a flow-on effect 
on the regression modelling as explanatory variables would contain many 
missing items.  

Option (b) includes achievement data from the previous years in order to 
increase the number (or proportion) of all students who have an achievement 
score that can be used in the imputation model. To maximise the number of 
students for which standardised achievement data are available for use in 
imputing the parent variables, standardised NAPLAN reading and numeracy 
results for students enrolled in a school in 2013 obtained from 2010, 2011 and 
2012 can be used.  This allowed standardised achievement data to be used 
for Years 4 -12 for students in 2013. Table 3 illustrates this concept. 
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Table 3:  Combining Student achievement scores across calendar years 

Year in 2013 NAPLAN Data Used in Imputation 
Kindergarten to YEAR 3 (as at 
April in 2013) 

None available 

YEAR 4 2012 YEAR 3 
YEAR 5 2011 YEAR 3 
YEAR 6 2012 YEAR 5 
YEAR 7 2011 YEAR 5 
YEAR 8 2012 YEAR 7 
YEAR 9 2011 YEAR 7 
YEAR 10 2012 YEAR 9 
YEAR 11 2011 YEAR 9 
YEAR 12 2010 YEAR 9 

 
Although the 2010 NAPLAN data was not provided in the sample data set for 
the purpose of this review, it could be included in the actual analysis for the 
entire data, and hence results for matched students in Years 4-12 in 2013 
could be utilised.   
In option (c), an achievement score could be missing in two ways: firstly, it 
could be missing (by design) if a student is not in a targeted cohort for 2010, 
2011 or 2012 (eg Kindergarten to Year 3 students in 2013). Secondly, student 
achievement data could also be missing for students in Years 3 to 10 for a 
given calendar year if the student was either absent, withdrawn or exempted 
from sitting the test.  
Where an achievement score is missing, it could be included in the imputation 
model as one of the variables to be imputed. For the students who were 
withdrawn or absent from sitting the test (approximately 3.8% of targeted 
cohorts in the sample data), it is plausible to impute an achievement score 
based on the other variables in the imputation model, including the parent 
background variables.  
However there are other considerations regarding imputing missing parental 
data for students who have missing achievement data by design or due to 
exemption. These are covered in the next section.  
 

3.7 Imputation of parents’ data for students without 
achievement scores (due to exemption or by design) 
A particular group of students that we need to consider are those that are 
exempted for NAPLAN and therefore do not have any NAPLAN based 
achievement scores. Students can be exempted for reasons such as 
intellectual disability or limited English proficiency. Another group that needs 
consideration are those missing achievement data by design (eg Kindergarten 
to Year 3 as at April in 2013). It is intended that the parental data for such 
students be included when calculating the FOEI score for a school. Hence the 
issue is how to treat these students when some of the parental data are 
missing.  
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There appears to be four options: 

1) Drop the cases from the imputation process and from the regression 
model. 

2) Include these cases with all other students in the imputation process 
that includes the achievement data as a data item to be imputed when 
it is not available. 

3) Include these cases with all other students in an imputation process 
that does not include achievement data as an explanatory variable or a 
variable to be imputed. 

4) Combine all cases with no achievement data as a separate group and 
run an imputation model that does not include achievement data, either 
as an explanatory variable or a variable to be imputed. 

Note these imputation options are considered in the context that they are 
used to generate imputed parental values for those students with no 
achievement data either by design or by exemption.  
Consider the assumptions and issues in each option: 
Option (1) effectively imputes the school average of the parental data for the 
deleted cases.  
Option (2) involves imputing parental data as well as achievement scores 
using all explanatory variables including achievement scores for all students.  
Option (3) involves imputing parental values for all students using explanatory 
variables other than the achievement variable.   
Option (4) uses the same imputation model as option (3) but limits the 
imputation process to only those students with no achievement scores, either 
by design or by exemption.  
Options (1) and (4) seem inferior to options (2) and (3). It needs to be 
remembered that the imputation process does not assume that the set of 
parents that are treated together have the same characteristics. It assumes 
that the relationship between observed and missing variables is the same. 
While the imputed achievement score under option (2) would not be what the 
students would have obtained had they sat the NAPLAN test, this is not 
relevant. The question is whether there are any reasons to think that the 
relationship between missing and observed parent data is any different for the 
parents of students with no achievement scores as the relationship for all 
parents. If not then option (2) should be preferred as it treats all parents in the 
same way. For cases when achievement scores are not available the imputed 
values of parental data are based on the relationship of that variable with the 
other parental variables and the imputed achievement score. As the 
achievement score itself is imputed based on the relationship of the 
achievement score and the observed parental variables, the approach is 
effectively using the observed parent variables. This means that option 2 and 
option 3 are unlikely to produce significantly different imputed parental values 
for students with no achievement data.  
From discussion with the department, imputation of achievement data for 
students where it is missing either by design or by exemption is unlikely to be 
accepted by stakeholders.  This could ultimately affect the acceptance of 
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FOEI values by school community. On this basis option (3) was the option 
finally accepted into the business rules by DEC.  
 

3.8 Imputation Process 
Given the discussion in section 3.3 to 3.7, Figure 2 provides a high-level 
description of different subsets of student cohorts (based on the 2012 sample 
data) for which different imputation models might need to be applied.   
 

 
Figure 2:  High-level conceptualisation of the different sets of student cohorts 
for which different imputation models might need to be applied (based on the 
2012 sample data). 
 

3.9 Results of Multiple Imputation Review 
The results of the multiple imputation models explored in the review are 
summarised in Appendix A for the single parent cases and in Appendix B for 
the two parent cases. The results are for each of the three models defined in 
Tables 1 and 2 for which NIASRA ran the imputation process on the review 
data set. Note that all models use achievement data as an explanatory 
variable (not an item for imputation) and are only run for students with 
achievement data.    
As part of the imputation process, as shown in Figure 1, new variables are 
created which include the imputed items as well as the original observed 
items.  As the number of imputations was set to M=10, ten new variables are 
created for each parent background variable.  In Stata 12, diagnostic tables 
are available (using the midiagplots function) for the completed categorical 
variables.  A table showing the proportion of each category obtained under 
Observed, Imputed and Completed data is created for each value of m=1, …, 
10.  As a consequence, ten tables are produced for each variable imputed.  

(A) 
Single Parent Family 

In NAPLAN 
Testing year in 
2011 or 2012: 
Years 3,4,5,6 
Years 7, 8, 9, 10 

3) Not in 
NAPLAN 
testing year 
Years K, 1, 2 
Years 11, 12 

1) Sat 
NAPLAN 

2) Didn’t Sit 
NAPLAN 
NAPexeeeee
ExamexamN
APLAN 

(B) 
Two- Parent Family 

In NAPLAN 
Testing year in 
2011 or 2012: 
Years 3,4,5,6 
Years 7, 8, 9, 10 

6) Not in 
NAPLAN testing 
year 
Years K, 1, 2 
Years 11, 12 

4) Sat 
NAPLAN 

5) Didn’t Sit 
NAPLAN 
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This results in 30 tables for the single parent cases and 60 tables for the two-
parent cases for each of the three different models that were run.  
To summarise the resulting data, the mean proportion and standard deviation 
were calculated for each set of 10 tables for each category of the variable.  
For example, for the variable PG1_School_Educ, the proportion of students 
from a single parent family whose parent’s highest school education level 
attained was a Year 9 or equivalent or below was calculated from each 
imputed data set and then the mean and standard deviation of those values 
are reported here.  These results do not include the imputation of any student 
achievement data.  In the review data set there were a total of 59849 students 
identified as belonging to a one-parent family.   
The overall change to the mean proportions when the imputed data is 
included is not significant.  For example, for Single Parents, school education 
level of Year 9 or equivalent or below has an observed proportion of 14.4%, 
(refer to Appendix A1) the mean proportion over all ten imputed under Model 
1 is 14.9% giving an overall mean proportion on the completed data of 14.4%.  
The movement for this category is as expected: that is, conditional on the 
relationships of other explanatory variables, the parents who did not respond 
to the question are more likely to have attained Year 9 or equivalent or below 
for their school education than those who did answer the question.  For 
Models 2 and 3, the mean proportion over all ten proportions for cases with 
imputed data increases to 15.2% and 15.1% respectively, however the mean 
completed proportion only changes slightly to 14.5% for both models.  This 
shows that the additional explanatory variables used in Models 2 and 3 have 
had an effect on the imputed proportions. The reason the overall average 
proportion based on the observed + imputed data has not changed 
significantly reflects the fact that only 9% of the parents were missing school 
education levels.  
Another example of the effect of the additional explanatory variables can be 
seen for the imputation of missing items in the variable Occupation Group 
(refer to Appendix A3). The observed proportion of single parents not in paid 
work is 34.9%; for Model 1, the mean proportion imputed is 38.5%, and for 
completed it is 35.9%.  The mean imputed proportion for Not in paid work 
increases to 40.1% for Model 2 and to 40.4% for Model 3.  This shows that 
the additional explanatory variables in Model 2 and 3 in the multiple 
imputation procedure are having an effect on the final estimates.  The 
direction of this change is as expected.  
The proportions for each category on the completed data are similar over all 
ten imputations.  The standard deviation reported in the results is the standard 
deviation across all ten proportions.  Since the observed proportions do not 
change from model to model, the standard deviations are all zero for the 
observed proportions for each model.  The standard deviations reported for 
the completed proportions are small in the order of 10-3 to 10-4.  This small 
standard deviation of the results of the ten imputations seems to suggest that 
the choice of M =10 was adequate.    
 

3.10 Final business rules for implementation 
After the review and further discussion, DEC decided to adopt the following 
steps for the imputation on the entire file:  
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• Step 1: Separate student records to single parent and two parent 
records and apply the following imputation processes separately on the 
two sets of records.  

• Step 2: Select students with NAPLAN results or are in the NAPLAN 
cohorts but were absent or withdrawn, run an imputation model 
imputing for missing values in the parent background variables (PBG) 
(three variables for the single parent records, and six variables for the 
two-parent records) and student achievement mean (average 
standardised score from NAPLAN), using PBG, student achievement 
mean, ATSI, school remoteness and community variables. Save as a 
separate file.  

• Step 3: Select all students. Run an imputation model imputing for 
missing values in PBG (three variables for the single parent records, 
and six variables for the two-parent records)), using PBG, ATSI, school 
remoteness and community variables (i.e. exclude student 
achievement mean from explanatory variables).  

• Step 4: From results of Step 3, select students that are not in NAPLAN 
cohorts or were exempted from NAPLAN, and merge them with the 
results from Step 2.  

• Step 5: Merge the two imputed data files generated for single and two-
parent student records into a single file comprising all students.  

 
4. Imputation Methodology and Regression 
Analysis: Conclusions 
In section 2 the issues associated with the approach to the regression 
analysis were considered and in section 3 the issues associated with 
imputation were considered. From these considerations and the analyses 
conducted an approach has been developed for which the key features are: 

• student level Imputation of missing parent data using a multiple 
imputation by chained equations approach involving the parent 
variables themselves, community variables, NAPLAN based student 
achievement scores, ATSI status and school remoteness.  

• Use school level robust regression to construct the regression model. 

• The dependent variable in the regression analysis is the observed 
student achievement scores obtained from 2012 student and NAPLAN 
data. These refer to students in Years 4, 6, 8 and 10 in 2013. 

• In the regression analyses the explanatory variables are the parental 
background variables. These are calculated using parental background 
data for all students in the school in 2013, including the imputed values 
for missing data.  

• All students enrolled in the school in 2013 are used in the calculation of 
the FOEI. 

• The variance of the estimated FOEI score for a school can be 
estimated accounting for the imputation process. 
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Appendix A: Summary of Multiple Imputation for Single Parent Families:  
 

Appendix A 1:  Results for Level of School_Education 
 
Model 1:  NonSchool_Educ + Occ_Group + StudMean 
 

Number	
   of	
   observed	
   =	
   34555	
  
Number	
   of	
   imputed	
   =	
   5474	
  
Number	
   of	
   completed	
   =	
   40029	
  

 

mean	
   code	
  
Model	
  1	
  	
  	
  

PG1b_School_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.144	
   0.149	
   0.144	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.377	
   0.367	
   0.376	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.103	
   0.097	
   0.103	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.375	
   0.388	
   0.377	
  
	
   	
   	
   	
   	
   	
  

sd	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.00	
   0.00473	
   0.00065	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.00	
   0.00678	
   0.00093	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.00	
   0.00203	
   0.00028	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.00	
   0.00751	
   0.00103	
  

 
 
Model 2:  NonSchool_Educ + Occ_Group + StudMean + 10 Census variables 
 
Number	
   of	
   observed	
   =	
   34555	
  
Number	
   of	
   imputed	
   =	
   5174	
  
Number	
   of	
   completed	
   =	
   39729	
  

 

mean	
   code	
  
Model	
  2	
  	
  	
  

PG1b_School_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.144	
   0.152	
   0.145	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.377	
   0.370	
   0.376	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.103	
   0.097	
   0.103	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.375	
   0.381	
   0.376	
  
	
   	
   	
   	
   	
   	
  

sd	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.00	
   0.00412	
   0.00054	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.00	
   0.00527	
   0.00069	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.00	
   0.00467	
   0.00061	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.00	
   0.00755	
   0.00098	
  

 
 

Model 3:  NonSchool_Educ + Occ_Group + StudMean + 10 Census variables+ ATSI 
+Remoteness 
 
Number	
   of	
   observed	
   =	
   34555	
  
Number	
   of	
   imputed	
   =	
   5148	
  
Number	
   of	
   completed	
   =	
   39703	
  

 

mean	
   code	
  
Model	
  3	
  	
  

PG1b_School_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.144	
   0.151	
   0.145	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.377	
   0.369	
   0.376	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.103	
   0.099	
   0.103	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.375	
   0.380	
   0.376	
  
	
   	
   	
   	
   	
   	
  

sd	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.00	
   0.00280	
   0.00052	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.00	
   0.00461	
   0.00067	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.00	
   0.00494	
   0.00074	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.00	
   0.00624	
   0.00094	
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Appendix A 2:  Results for Level of _NonSchool_Education 
 

Model 1:  School_Educ + Occ_Group + StudMean  
Number	
   of	
   observed	
   =	
   27799	
  
Number	
   of	
   imputed	
   =	
   12230	
  
Number	
   of	
   completed	
   =	
   40029	
  

	
  
mean	
   code	
   Model1	
  	
  	
  	
  PG1b_NonSchool_Educ	
   Observed	
   Imputed	
   Completed	
  

	
   4	
   No	
  non-­‐school	
  education	
   0.324	
   0.395	
   0.346	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.395	
   0.396	
   0.396	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.141	
   0.119	
   0.135	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.139	
   0.090	
   0.124	
  
	
   	
   	
   	
   	
   	
  

sd	
   4	
   No	
  non-­‐school	
  education	
   0.00	
   0.00499	
   0.00153	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.00	
   0.00349	
   0.00107	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.00	
   0.00293	
   0.00090	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.00	
   0.00353	
   0.00108	
  
	
  

Model 2:   School_Educ + Occ_Group + StudMean + 10 Census variables 
Number	
   of	
   observed	
   =	
   27799	
  
Number	
   of	
   imputed	
   =	
   11506	
  
Number	
   of	
   completed	
   =	
   39305	
  

	
  

mean	
   code	
   Model	
  2	
  	
  	
  PG1b_NonSchool_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   4	
   No	
  non-­‐school	
  education	
   0.324	
   0.403	
   0.347	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.395	
   0.398	
   0.396	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.141	
   0.117	
   0.134	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.139	
   0.083	
   0.122	
  
	
   	
   	
   	
   	
   	
  

sd	
   4	
   No	
  non-­‐school	
  education	
   0.00	
   0.00392	
   0.00115	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.00	
   0.00515	
   0.00151	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.00	
   0.00280	
   0.00082	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.00	
   0.00246	
   0.00072	
  
	
  
	
  

Model 3:  School_Educ + Occ_Group + StudMean + 10 Census variables+ ATSI 
+Remoteness 

Number	
   of	
   observed	
   =	
   27799	
  
Number	
   of	
   imputed	
   =	
   11471	
  
Number	
   of	
   completed	
   =	
   39270	
  

	
  

mean	
   code	
   Model	
  3	
  	
  PG1b_NonSchool_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   4	
   No	
  non-­‐school	
  education	
   0.324	
   0.405	
   0.348	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.395	
   0.393	
   0.395	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.141	
   0.117	
   0.134	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.139	
   0.085	
   0.123	
  
	
   	
   	
   	
   	
   	
  
sd	
   4	
   No	
  non-­‐school	
  education	
   0.00	
   0.00404	
   0.00123	
  

	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.00	
   0.00379	
   0.00120	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.00	
   0.00338	
   0.00107	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.00	
   0.00193	
   0.00067	
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Appendix A 3:  Results for Occupation_Group	
  
	
  

Model 1:   School_Educ + NonSchool_Educ + StudMean   
Number	
   of	
   observed	
   =	
   28622	
  
Number	
   of	
   imputed	
   =	
   11407	
  
Number	
   of	
   completed	
   =	
   40029	
  

	
   	
   	
   	
   	
  
mean	
   code	
   Model	
  1	
  	
  	
  PG1b_Occ_Group	
  	
   Observed	
   Imputed	
   Completed	
  

	
   1	
   Senior	
  management	
   0.083	
   0.069	
   0.079	
  
	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.133	
   0.116	
   0.128	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.216	
   0.202	
   0.212	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.220	
   0.228	
   0.222	
  
	
   8	
   Not	
  in	
  paid	
  work	
   0.349	
   0.385	
   0.359	
  

	
   	
   	
   	
   	
   	
  
sd	
   1	
   Senior	
  management	
   0.00	
   0.00246	
   0.00070	
  

	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.00	
   0.00342	
   0.00098	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.00	
   0.00529	
   0.00151	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.00	
   0.00445	
   0.00127	
  

	
   8	
   Not	
  in	
  paid	
  work	
   0.00	
   0.00641	
   0.00183	
  
 

Model 2:   School_Educ	
  +	
  NonSchool_Educ	
  +	
  StudMean + 10 Census variables 
Number	
   of	
   observed	
   =	
   28622	
  
Number	
   of	
   imputed	
   =	
   10649	
  
Number	
   of	
   completed	
   =	
   39271	
  

	
   	
   	
   	
   	
  

mean	
   code	
   Model	
  2	
  	
  	
  PG1b_Occ_Group	
  	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Senior	
  management	
   0.083	
   0.065	
   0.078	
  
	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.133	
   0.110	
   0.127	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.216	
   0.197	
   0.211	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.220	
   0.227	
   0.222	
  
	
   8	
   Not	
  in	
  paid	
  work	
   0.349	
   0.401	
   0.363	
  

	
   	
   	
   	
   	
   	
  

sd	
   1	
   Senior	
  management	
   0.00	
   0.00274	
   0.00074	
  
	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.00	
   0.00320	
   0.00087	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.00	
   0.00236	
   0.00064	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.00	
   0.00673	
   0.00183	
  

	
   8	
   Not	
  in	
  paid	
  work	
   0.00	
   0.00528	
   0.00143	
  
 

Model 3: School_Educ + NonSchool_Educ + StudMean + 10 Census variables+ ATSI 
+Remoteness 
 

Number	
   of	
   observed	
   =	
   28622	
  
Number	
   of	
   imputed	
   =	
   10615	
  
Number	
   of	
   completed	
   =	
   39237	
  

	
   	
   	
   	
   	
  
mean	
   code	
   Model	
  3	
  	
  	
  PG1b_Occ_Group	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Senior	
  management	
   0.083	
   0.068	
   0.079	
  
	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.133	
   0.108	
   0.126	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.216	
   0.195	
   0.210	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.349	
   0.404	
   0.364	
  
	
   8	
   Not	
  in	
  paid	
  work	
   0.349	
   0.404	
   0.364	
  

	
   	
   	
   	
   	
   	
  

sd	
   1	
   Senior	
  management	
   0.00	
   0.00300	
   0.00082	
  
	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.00	
   0.00227	
   0.00079	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.00	
   0.00384	
   0.00103	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.00	
   0.00576	
   0.00151	
  

	
   8	
   Not	
  in	
  paid	
  work	
   0.00	
   0.00576	
   0.00151	
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Appendix B:  Summary of Multiple Imputation for Two- Parent Families  
 

Appendix B1:  Results for Level of _School_Education (Parent 1) 
 

Model 1:    StudMean  
Number	
   of	
   observed	
   =	
   182159	
  
Number	
   of	
   imputed	
   =	
   29326	
  
Number	
   of	
   completed	
   =	
   211485	
  

	
  
mean	
   code	
   Model	
  1	
  	
  	
  PG1b_School_Educ	
   Observed	
   Imputed	
   Completed	
  

	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.077	
   0.085	
   0.078	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.295	
   0.295	
   0.295	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.083	
   0.079	
   0.082	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.545	
   0.541	
   0.545	
  
	
   	
   	
   	
   	
   	
  

sd	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.00	
   0.00163	
   0.00000	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.00	
   0.00288	
   0.00047	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.00	
   0.00204	
   0.00052	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.00	
   0.00343	
   0.00057	
  

 
Model 2:   StudMean + 10 Census variables 
Number	
   of	
   observed	
   =	
   182159	
  
Number	
   of	
   imputed	
   =	
   28250	
  
Number	
   of	
   completed	
   =	
   210409	
  
	
  

mean	
   code	
   Model	
  2	
  	
  	
  PG1b_School_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.077	
   0.086	
   0.078	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.295	
   0.297	
   0.295	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.083	
   0.079	
   0.082	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.545	
   0.538	
   0.544	
  
	
   	
   	
   	
   	
   	
  

sd	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.00	
   0.00149	
   0.00000	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.00	
   0.00250	
   0.00042	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.00	
   0.00176	
   0.00048	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.00	
   0.00362	
   0.00063	
  

 
Model 3:   StudMean + 10 Census variables+ ATSI +Remoteness 
Number	
   of	
   observed	
   =	
   182159	
  
Number	
   of	
   imputed	
   =	
   28206	
  
Number	
   of	
   completed	
   =	
   210365	
  

	
  
mean	
   code	
   Model	
  3	
  	
  PG1b_School_Educ	
   Observed	
   Imputed	
   Completed	
  

	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.077	
   0.086	
   0.078	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.295	
   0.296	
   0.295	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.083	
   0.079	
   0.082	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.545	
   0.540	
   0.545	
  
	
   	
   	
   	
   	
   	
  

sd	
   1	
   Year	
  9	
  or	
  equivalent	
  or	
  below	
   0.00	
   0.00210	
   0.00032	
  
	
   2	
   Year	
  10	
  or	
  equivalent	
   0.00	
   0.00247	
   0.00032	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.00	
   0.00222	
   0.00042	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.00	
   0.00295	
   0.00052	
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Appendix B2:  Results for Level of _NonSchool_Education (Parent 1) 
 
Model 1:  StudMean  
Number	
   of	
   observed	
   =	
   155391	
  
Number	
   of	
   imputed	
   =	
   56094	
  
Number	
   of	
   completed	
   =	
   211485	
  

 
mean	
   code	
   Model1	
  	
  	
  	
  PG1b_NonSchool_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   4	
   No	
  non-­‐school	
  education	
   0.247	
   0.334	
   0.270	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.321	
   0.349	
   0.329	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.167	
   0.153	
   0.163	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.265	
   0.166	
   0.238	
  
	
   	
   	
   	
   	
   	
  

sd	
   4	
   No	
  non-­‐school	
  education	
   0.00	
   0.00222	
   0.00057	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.00	
   0.00211	
   0.00067	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.00	
   0.00117	
   0.00032	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.00	
   0.00207	
   0.00070	
  

 
Model 2:  StudMean + 10 Census variables 
Number	
   of	
   observed	
   =	
   155391	
  
Number	
   of	
   imputed	
   =	
   54197	
  
Number	
   of	
   completed	
   =	
   209588	
  

	
  
mean	
   code	
   Model	
  2	
  	
  	
  PG1b_NonSchool_Educ	
   Observed	
   Imputed	
   Completed	
  

	
   4	
   No	
  non-­‐school	
  education	
   0.247	
   0.338	
   0.271	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.321	
   0.351	
   0.329	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.167	
   0.151	
   0.163	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.265	
   0.160	
   0.238	
  
	
   	
   	
   	
   	
   	
  

sd	
   4	
   No	
  non-­‐school	
  education	
   0.00	
   0.00221	
   0.00067	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.00	
   0.00264	
   0.00082	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.00	
   0.00223	
   0.00067	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.00	
   0.00088	
   0.00032	
  

	
  
Model 3: StudMean + 10 Census variables+ ATSI +Remoteness 
Number	
   of	
   observed	
   =	
   155391	
  
Number	
   of	
   imputed	
   =	
   54125	
  
Number	
   of	
   completed	
   =	
   209516	
  

	
  
mean	
   code	
   Model	
  3	
  	
  PG1b_NonSchool_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   4	
   No	
  non-­‐school	
  education	
   0.247	
   0.337	
   0.270	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.321	
   0.351	
   0.329	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.167	
   0.152	
   0.163	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.265	
   0.160	
   0.238	
  
	
   	
   	
   	
   	
   	
  
sd	
   4	
   No	
  non-­‐school	
  education	
   0.00	
   0.00231	
   0.00070	
  

	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.00	
   0.00286	
   0.00074	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.00	
   0.00114	
   0.00042	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.00	
   0.00116	
   0.00042	
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Appendix B3:  Results for _Occupation _Group (Parent 1) 
 
Model 1:  StudMean   

Number	
   of	
   observed	
   =	
   164720	
  
Number	
   of	
   imputed	
   =	
   46765	
  
Number	
   of	
   completed	
   =	
   211485	
  

	
   	
   	
   	
   	
  
mean	
   code	
   Model	
  1	
  	
  	
  PG1b_Occ_Group	
  	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Senior	
  management	
   0.133	
   0.102	
   0.126	
  
	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.182	
   0.159	
   0.177	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.235	
   0.226	
   0.233	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.185	
   0.204	
   0.189	
  
	
   8	
   Not	
  in	
  paid	
  work	
   0.265	
   0.309	
   0.275	
  

	
   	
   	
   	
   	
   	
  
sd	
   1	
   Senior	
  management	
   0.00	
   0.00114	
   0.00000	
  

	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.00	
   0.00149	
   0.00042	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.00	
   0.00280	
   0.00067	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.00	
   0.00245	
   0.00070	
  

	
   8	
   Not	
  in	
  paid	
  work	
   0.00	
   0.00297	
   0.00082	
  
 

Model 2:  StudMean + 10 Census variables 
Number	
   of	
   observed	
   =	
   164720	
  
Number	
   of	
   imputed	
   =	
   44973	
  
Number	
   of	
   completed	
   =	
   209693	
  

	
   	
   	
   	
   	
  
mean	
   code	
   Model	
  2	
  	
  	
  PG1b_Occ_Group	
  	
   Observed	
   Imputed	
   Completed	
  

	
   1	
   Senior	
  management	
   0.133	
   0.098	
   0.125	
  
	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.182	
   0.151	
   0.175	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.235	
   0.220	
   0.232	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.185	
   0.210	
   0.190	
  
	
   8	
   Not	
  in	
  paid	
  work	
   0.265	
   0.321	
   0.277	
  

	
   	
   	
   	
   	
   	
  
sd	
   1	
   Senior	
  management	
   0.00	
   0.00155	
   0.00052	
  

	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.00	
   0.00175	
   0.00048	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.00	
   0.00275	
   0.00063	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.00	
   0.00208	
   0.00057	
  

	
   8	
   Not	
  in	
  paid	
  work	
   0.00	
   0.00239	
   0.00070	
  
 
Model 3:  StudMean + 10 Census variables+ ATSI +Remoteness 

Number	
   of	
   observed	
   =	
   164720	
  
Number	
   of	
   imputed	
   =	
   44902	
  
Number	
   of	
   completed	
   =	
   209622	
  

mean	
   code	
   Model	
  3	
  	
  	
  PG1b_Occ_Group	
  	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Senior	
  management	
   0.133	
   0.099	
   0.126	
  
	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.182	
   0.152	
   0.175	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.235	
   0.219	
   0.232	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.185	
   0.210	
   0.190	
  
	
   8	
   Not	
  in	
  paid	
  work	
   0.265	
   0.321	
   0.277	
  

	
   	
   	
   	
   	
   	
  

sd	
   1	
   Senior	
  management	
   0.00	
   0.00134	
   0.00053	
  
	
   2	
   Other	
  business	
  manager,	
  arts/media/sport	
   0.00	
   0.00106	
   0.00052	
  
	
   3	
   Tradesman/woman,	
  clerks,	
  sales	
  and	
  servi	
   0.00	
   0.00247	
   0.00052	
  
	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.00	
   0.00223	
   0.00067	
  

	
   8	
   Not	
  in	
  paid	
  work	
   0.00	
   0.00301	
   0.00079	
  
 



 37 

 
Appendix B 4:  Results for Level of School_Education (Parent 2) 

 
Model 1:  StudMean  

Number	
   of	
   observed	
   =	
   185858	
  
Number	
   of	
   imputed	
   =	
   25627	
  
Number	
   of	
   completed	
   =	
   211485	
  

 

mean	
   code	
  
Model	
  1	
  	
  	
  

PG2b_School_Educ	
   Observed	
   Imputed	
   Completed	
  

	
   1	
  
Year	
  9	
  or	
  equivalent	
  or	
  
below	
   0.089	
   0.099	
   0.090	
  

	
   2	
   Year	
  10	
  or	
  equivalent	
   0.333	
   0.332	
   0.333	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.077	
   0.071	
   0.076	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.501	
   0.499	
   0.501	
  
	
   	
   	
   	
   	
   	
  

sd	
   1	
  
Year	
  9	
  or	
  equivalent	
  or	
  
below	
   0.00	
   0.00295	
   0.00047	
  

	
   2	
   Year	
  10	
  or	
  equivalent	
   0.00	
   0.00360	
   0.00053	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.00	
   0.00195	
   0.00052	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.00	
   0.00251	
   0.00032	
  

 
Model 2:  StudMean + 10 Census variables 
Number	
   of	
   observed	
   =	
   185858	
  
Number	
   of	
   imputed	
   =	
   24863	
  
Number	
   of	
   completed	
   =	
   210721	
  

 

mean	
   code	
  
Model	
  2	
  	
  	
  

PG2b_School_Educ	
   Observed	
   Imputed	
   Completed	
  

	
   1	
  
Year	
  9	
  or	
  equivalent	
  or	
  
below	
   0.089	
   0.103	
   0.090	
  

	
   2	
   Year	
  10	
  or	
  equivalent	
   0.333	
   0.332	
   0.333	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.077	
   0.073	
   0.077	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.501	
   0.491	
   0.500	
  
	
   	
   	
   	
   	
   	
  

sd	
   1	
  
Year	
  9	
  or	
  equivalent	
  or	
  
below	
   0.00	
   0.00157	
   0.00052	
  

	
   2	
   Year	
  10	
  or	
  equivalent	
   0.00	
   0.00250	
   0.00042	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.00	
   0.00084	
   0.00000	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.00	
   0.00237	
   0.00000	
  

 
Model 3:  StudMean + 10 Census variables+ ATSI +Remoteness 
Number	
   of	
   observed	
   =	
   185858	
  
Number	
   of	
   imputed	
   =	
   24816	
  
Number	
   of	
   completed	
   =	
   210674	
  

 

mean	
   code	
  
Model	
  3	
  	
  

PG2b_School_Educ	
   Observed	
   Imputed	
   Completed	
  

	
   1	
  
Year	
  9	
  or	
  equivalent	
  or	
  
below	
   0.089	
   0.103	
   0.090	
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   2	
   Year	
  10	
  or	
  equivalent	
   0.333	
   0.337	
   0.333	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.077	
   0.072	
   0.077	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.501	
   0.488	
   0.500	
  
	
   	
   	
   	
   	
   	
  

sd	
   1	
  
Year	
  9	
  or	
  equivalent	
  or	
  
below	
   0.00	
   0.00226	
   0.00048	
  

	
   2	
   Year	
  10	
  or	
  equivalent	
   0.00	
   0.00222	
   0.00042	
  
	
   3	
   Year	
  11	
  or	
  equivalent	
   0.00	
   0.00151	
   0.00048	
  
	
   4	
   Year	
  12	
  or	
  equivalent	
   0.00	
   0.00244	
   0.00042	
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Appendix B 5:  Results for Level of NonSchool_Education (Parent 2) 
 
Model 1:  StudMean  
Number	
   of	
   observed	
   =	
   161801	
  
Number	
   of	
   imputed	
   =	
   49684	
  
Number	
   of	
   completed	
   =	
   211485	
  

 
mean	
   code	
   Model1	
  	
  	
  	
  PG2b_NonSchool_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   4	
   No	
  non-­‐school	
  education	
   0.196	
   0.283	
   0.217	
  

	
   5	
  
Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  
cer	
   0.409	
   0.438	
   0.416	
  

	
   6	
   Advanced	
  diploma/Diploma	
   0.135	
   0.120	
   0.132	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.260	
   0.159	
   0.236	
  
	
   	
   	
   	
   	
   	
  

sd	
   4	
   No	
  non-­‐school	
  education	
   0.00	
   0.00247	
   0.00053	
  

	
   5	
  
Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  
cer	
   0.00	
   0.00298	
   0.00085	
  

	
   6	
   Advanced	
  diploma/Diploma	
   0.00	
   0.00199	
   0.00048	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.00	
   0.00166	
   0.00057	
  
 
Model 2:  StudMean + 10 Census variables 
Number	
   of	
   observed	
   =	
   161801	
  
Number	
   of	
   imputed	
   =	
   48035	
  
Number	
   of	
   completed	
   =	
   209836	
  

 
mean	
   code	
   Model	
  2	
  	
  	
  PG2b_NonSchool_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   4	
   No	
  non-­‐school	
  education	
   0.196	
   0.291	
   0.218	
  

	
   5	
  
Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  
cer	
   0.409	
   0.441	
   0.416	
  

	
   6	
   Advanced	
  diploma/Diploma	
   0.135	
   0.118	
   0.131	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.260	
   0.150	
   0.235	
  
	
   	
   	
   	
   	
   	
  

sd	
   4	
   No	
  non-­‐school	
  education	
   0.00	
   0.00277	
   0.00052	
  

	
   5	
  
Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  
cer	
   0.00	
   0.00270	
   0.00063	
  

	
   6	
   Advanced	
  diploma/Diploma	
   0.00	
   0.00140	
   0.00048	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.00	
   0.00165	
   0.00048	
  
 
Model 3:  StudMean + 10 Census variables+ ATSI +Remoteness 
Number	
   of	
   observed	
   =	
   161801	
  
Number	
   of	
   imputed	
   =	
   47957	
  
Number	
   of	
   completed	
   =	
   209758	
  

 

mean	
   code	
   Model	
  3	
  	
  PG2b_NonSchool_Educ	
   Observed	
   Imputed	
   Completed	
  
	
   4	
   No	
  non-­‐school	
  education	
   0.196	
   0.291	
   0.218	
  
	
   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.409	
   0.442	
   0.416	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.135	
   0.118	
   0.131	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.260	
   0.149	
   0.235	
  
	
   	
   	
   	
   	
   	
  
sd	
   4	
   No	
  non-­‐school	
  education	
   0.00	
   0.00288	
   0.00082	
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   5	
   Certificate	
  I	
  to	
  IV	
  (including	
  trade	
  cer	
   0.00	
   0.00162	
   0.00048	
  
	
   6	
   Advanced	
  diploma/Diploma	
   0.00	
   0.00175	
   0.00067	
  
	
   7	
   Bachelor	
  degree	
  or	
  above	
   0.00	
   0.00181	
   0.00048	
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Appendix B 6:  Results for Occupation Group (Parent 2) 
Model	
  1:	
  	
  StudMean	
   	
   	
  

Number	
   of	
   observed	
   =	
   170888	
  
Number	
   of	
   imputed	
   =	
   40597	
  
Number	
   of	
   completed	
   =	
   211485	
  

	
   	
   	
   	
   	
  
mean	
   code	
   Model	
  1	
  	
  	
  PG2b_Occ_Group	
  	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Senior	
  management	
   0.193	
   0.150	
   0.185	
  

	
   2	
  
Other	
  business	
  manager,	
  
arts/media/sport	
   0.238	
   0.210	
   0.233	
  

	
   3	
  
Tradesman/woman,	
  clerks,	
  sales	
  and	
  
servi	
   0.254	
   0.250	
   0.253	
  

	
   4	
  
Machine	
  operators,	
  hospitality	
  staff,	
  
as	
   0.248	
   0.296	
   0.258	
  

	
   8	
   Not	
  in	
  paid	
  work	
   0.066	
   0.095	
   0.072	
  
	
   	
   	
   	
   	
   	
  
sd	
   1	
   Senior	
  management	
   0.00	
   0.00151	
   0.00032	
  

	
   2	
  
Other	
  business	
  manager,	
  
arts/media/sport	
   0.00	
   0.00184	
   0.00053	
  

	
   3	
  
Tradesman/woman,	
  clerks,	
  sales	
  and	
  
servi	
   0.00	
   0.00255	
   0.00063	
  

	
   4	
  
Machine	
  operators,	
  hospitality	
  staff,	
  
as	
   0.00	
   0.00287	
   0.00053	
  

	
   8	
   Not	
  in	
  paid	
  work	
   0.00	
   0.00178	
   0.00032	
  
 

Model 2:  StudMean + 10 Census variables 
Number	
   of	
   observed	
   =	
   170888	
  
Number	
   of	
   imputed	
   =	
   39036	
  
Number	
   of	
   completed	
   =	
   209924	
  

	
   	
   	
   	
   	
  
mean	
   code	
   Model	
  2	
  	
  	
  PG2b_Occ_Group	
  	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Senior	
  management	
   0.193	
   0.138	
   0.183	
  

	
   2	
  
Other	
  business	
  manager,	
  
arts/media/sport	
   0.238	
   0.198	
   0.231	
  

	
   3	
  
Tradesman/woman,	
  clerks,	
  sales	
  and	
  
servi	
   0.254	
   0.244	
   0.253	
  

	
   4	
  
Machine	
  operators,	
  hospitality	
  staff,	
  
as	
   0.248	
   0.317	
   0.261	
  

	
   8	
   Not	
  in	
  paid	
  work	
   0.066	
   0.104	
   0.073	
  
	
   	
   	
   	
   	
   	
  
sd	
   1	
   Senior	
  management	
   0.00	
   0.00133	
   0.00042	
  

	
   2	
  
Other	
  business	
  manager,	
  
arts/media/sport	
   0.00	
   0.00211	
   0.00053	
  

	
   3	
  
Tradesman/woman,	
  clerks,	
  sales	
  and	
  
servi	
   0.00	
   0.00263	
   0.00053	
  

	
   4	
  
Machine	
  operators,	
  hospitality	
  staff,	
  
as	
   0.00	
   0.00227	
   0.00047	
  

	
   8	
   Not	
  in	
  paid	
  work	
   0.00	
   0.00165	
   0.00042	
  
 
Model 3:  StudMean + 10 Census variables+ ATSI +Remoteness 
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Number	
   of	
   observed	
   =	
   170888	
  
Number	
   of	
   imputed	
   =	
   38961	
  
Number	
   of	
   completed	
   =	
   209849	
  
	
  

mean	
   code	
   Model	
  3	
  	
  	
  PG2b_Occ_Group	
  	
   Observed	
   Imputed	
   Completed	
  
	
   1	
   Senior	
  management	
   0.193	
   0.137	
   0.183	
  

	
   2	
  
Other	
  business	
  manager,	
  
arts/media/sport	
   0.238	
   0.198	
   0.231	
  

	
   3	
  
Tradesman/woman,	
  clerks,	
  sales	
  and	
  
servi	
   0.254	
   0.244	
   0.252	
  

	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.248	
   0.317	
   0.261	
  
	
   8	
   Not	
  in	
  paid	
  work	
   0.066	
   0.104	
   0.073	
  

	
   	
   	
   	
   	
   	
  
sd	
   1	
   Senior	
  management	
   0.00	
   0.00157	
   0.00052	
  

	
   2	
  
Other	
  business	
  manager,	
  
arts/media/sport	
   0.00	
   0.00237	
   0.00048	
  

	
   3	
  
Tradesman/woman,	
  clerks,	
  sales	
  and	
  
servi	
   0.00	
   0.00247	
   0.00052	
  

	
   4	
   Machine	
  operators,	
  hospitality	
  staff,	
  as	
   0.00	
   0.00148	
   0.00032	
  
	
   8	
   Not	
  in	
  paid	
  work	
   0.00	
   0.00158	
   0.00042	
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Appendix C: Plot of Residuals from OLS School-Level Regression Analysis, 
2012 Data based on complete cases, selective school excluded in regression. 

 


