
Software Engineering Stage 6 (Year 12) – sample assessment task 3 notification
Software engineering project

Contents
About this resource	2
Purpose of resource	2
Target audience	2
When and how to use	2
Task description	3
Project description	4
Submission details	6
Steps to success	7
What is the teacher looking for?	10
Marking guidelines	12
Student-facing rubric	14
Student support material	17
Scenarios for students who do not have a client	17
Scenario 1 – parking roster	17
Scenario 2 – typing tutor game	20
Additional information	25
Assessment advice	25
Assessment as a learning opportunity	25
Differentiation advice	26
Support and alignment	27
Evidence base	29

[bookmark: _Toc165551197]About this resource
[bookmark: _Toc165551198]Purpose of resource
This sample assessment task unpacks how teachers can assess students in the project for Year 12 Software Engineering.
[bookmark: _Toc165551199]Target audience
This resource can be used to support teachers with effective syllabus implementation.
[bookmark: _Toc165551200]When and how to use
This resource is designed for assessing students in the area of their software engineering project. The resource can be adapted to suit the context of the school. This is sample assessment 3 of 4. Teachers can also refer to the sample scope and sequence and assessment schedule. The task is weighted at 30% and requires students to create documentation, a system and a presentation.

[bookmark: _Toc165551201]Task description
Type of task: develop a software engineering project containing a solution, project documentation and a presentation.
Outcomes being assessed:
A student:
[bookmark: _Int_zVKfcgMD]justifies methods used to plan, develop and engineer software solutions SE-12-01
applies structural elements to develop programming code SE-12-02
analyses how current hardware, software and emerging technologies influence the development of software engineering solutions SE-12-03
[bookmark: _Int_afpb2smR]evaluates practices to safely and securely collect, use and store data SE-12-04
[bookmark: _Int_axoJALAo][bookmark: _Int_fiN0B3Is]explains the social, ethical and legal implications of software engineering on the individual, society and the environment SE-12-05
[bookmark: _Int_N6qOl4Kd]justifies the selection and use of tools and resources to design, develop, manage and evaluate software SE-12-06
[bookmark: _Int_rQQet1XE]designs, develops and implements safe and secure programming solutions SE-12-07
tests and evaluates language structures to refine code SE-12-08
applies methods to manage and document the development of a software project SE-12-09
[bookmark: _Int_GqMKMU4y]Software Engineering 11–12 Syllabus © NSW Education Standards Authority (NESA) for and on behalf of the Crown in right of the State of New South Wales, 2022.
Suggested weighting: 30%
Students identify a real-world problem or opportunity that can be addressed through the development of a software engineering project. Students develop project documentation and engineer a software solution that addresses this real-world problem or opportunity. The software engineering project is presented to the class by simulating a client handover.
[bookmark: _Toc163652414][bookmark: _Toc165551202]Project description
Students find a client for whom they can develop a software solution. Students unable to find a client may use Scenario 1 or Scenario 2 in the Student support material section of this assessment task.
[image:]Possible clients include:
school-based positions: a teacher, librarian or school administrator
a member of the wider community
business owner
a non-government organisation that works on various humanitarian and social issues
a sporting club, coach, manager or gym
a PCYC, YMCA, Scouts, Guides or similar
a community group, religious group or hobby group
any other organisation or client approved by the teacher.
Students meet and negotiate with their client to:
define and analyse requirements
assess scheduling feasibility
define boundaries
continually check progress
document all correspondence.
Note: students ensure their classroom teacher is involved in all contact and correspondence between themselves and their clients. This strengthens school partnerships to ensure a quality learning experience for the student and a quality software product for the client. It is the students’ responsibility that both course and client requirements are met. School-defined submission dates and client requirements will assist in determining the scale and scope of the final project.
[bookmark: _Toc163652415]The software solution:
[bookmark: _Int_DfCsebHU]demonstrates the design, development and construction of algorithms
addresses all the clients functional and performance requirements.
The program should also:
use a language-dependent code optimisation technique
be configurable in terms of the interface layout, colour scheme, accessibility requirements, legislative and technical requirements as per client needs
[bookmark: _Int_P8zXCx5N]incorporate security elements such as usernames, passwords, basic encryption and decryption as per client requirements.
include a proposal for an additional innovative solution using a prototype and user interface (UI) design.
[bookmark: _Toc163652416]

[bookmark: _Toc165551203]Submission details
Students submit:
Component A – project documentation
Complete resource booklet including:
process diary
client correspondence and feedback
Gantt chart
use of modelling tools.
Component B – software solution
[bookmark: _Hlk165021212]Develop, code and upload a software solution for the problem as indicated in the project documentation.
Component C – presentation
Present their software engineering project to peers
Respond to Q&A.

[bookmark: _Toc163652417][bookmark: _Toc165551204]Steps to success
Table 1 – assessment preparation schedule
	[bookmark: _Hlk164343447]Steps
	What I need to do

	Component A –
Project documentation
	Ongoing completion of the Software engineering project documentation booklet provided that involves 4 key stages.
Identifying and defining
Research and planning
Producing and implementing
Testing and evaluating

	Identifying and defining
	Begin by defining and analysing the problem requirements including:
demonstrating need(s) or opportunities
assessing scheduling and financial feasibility
generating requirements including functionality and performance
defining data structures and data types
defining boundaries
Provide ongoing screenshots of tools used to develop ideas and generate solutions including:
brainstorming, mind mapping and storyboards
data dictionaries
algorithm design
code generation
testing and debugging
installation
maintenance.

	Research and planning
	Apply ongoing project management to plan and conduct the development and implementation of the project including:
scheduling and tracking using a software tool, including Gantt charts
using collaboration tools
Explore communication issues associated with project work including:
involving and empowering the client
enabling feedback
negotiating
Investigate how software engineering solutions are quality assured including:
defining criteria on which quality will be judged
ensuring requirements are met using a continual checking process
addressing compliance and legislative requirements
Demonstrate the use of modelling tools including:
data flow diagrams
structure charts
class diagrams
decision trees.

	Component B –complete software solution
	Develop and code a software solution for the problem as indicated in the project documentation
Upload the solution.

	Producing and implementing
	[bookmark: _Int_VksjkY51]Design, construct and implement a solution to a software problem using appropriate development approach(es)
Develop, construct and document algorithms
Implement version control when developing a software engineering solution
Propose an additional innovative solution using a prototype and user interface (UI) design.

	Testing and evaluating
	Apply methodologies to test and evaluate code
Use a language-dependent code optimisation technique.

	Component C – presentation
	Present their software engineering project to peers
Respond to questions and answers.

	Testing and evaluating
	Analyse and respond to feedback
Evaluate the effectiveness of a software engineering solution.

[bookmark: _Toc165551205]What is the teacher looking for?
Students are required to submit 3 components by the end of this project.
Component A – project documentation
The project documentation comprises of the 4 sections, based on the Software Engineering syllabus:
1. Identifying and defining
Research and planning
Producing and implementing
Testing and evaluating
The content of the project documentation should follow the support resource provided.
Component B – software solution
Students, in consultation with their teacher, choose the programming language with which their solution is developed. Examples of languages include the VS suite, Python, Java and C.
Students’ programs should (where relevant) incorporate combinations of the following features: control structures, global and local variables, use of simple and structured data types, classes, objects, attributes and methods, functions, modules and libraries and file handling.
Other examples of tools could include web page creation tools, front-end web development frameworks and SQL databases.
The software engineering project should solve a real-world problem or meet a real-world need or opportunity as determined through negotiation with a client. These clients could be associated with health, education, business, entertainment or social. Note that this list is not exhaustive.
Component C – presentation
[bookmark: _ydfdi7r5m5ej][bookmark: _Int_vBZWaBNA]Students are to develop a 4-minute presentation in the appropriate format (for example, PowerPoint) that demonstrates their software solution to a client (simulated by peers) using a professional language, style and format. The presentation will include screenshots of the development and documentation of the process. During a 3-minute question and answer session students will answer questions about their project and receive feedback from the audience.
The presentation must have:
[bookmark: _Int_AulZjkdE]Presentation slides: A set of slides in the appropriate format (for example PowerPoint) that highlights your solutions features, benefits and challenges using appropriate visual aids such as slides, diagrams and screenshots.
Software demonstration: a live demonstration of your system that allows your teacher and peers to see how you interact with the system and provide feedback.

[bookmark: _Toc165551206]Marking guidelines
Table 2 – assessment marking guidelines
	Grade
	Marking guideline descriptors

	A
	[bookmark: _Int_6IC0FKX1]A student demonstrates extensive knowledge and skill in the application of data, tools and resources to develop and evaluate a fully functional software engineering solution.
A student demonstrates extensive knowledge and skill in the development, testing and implementation of safe and secure code.
[bookmark: _Int_APqrSrAo][bookmark: _Int_goCTXJrB]A student demonstrates extensive knowledge and understanding of the social, ethical and legal implications of the application of software engineering solutions on the individual, society and the environment.
A student applies comprehensive skills in developing, managing and documenting software engineering projects.
A student communicates logically and effectively using a range of terms, conventions, and methods.

	B
	[bookmark: _Int_memZ0204]A student demonstrates thorough knowledge and skill in the application of data, tools and resources to develop a functional software engineering solution.
A student demonstrates thorough knowledge and skill in the development, testing and implementation of safe and secure code.
[bookmark: _Int_ub8xxJZj][bookmark: _Int_A7X82sgo]A student demonstrates thorough knowledge and understanding of the social, ethical and legal implications of the application of software engineering solutions on the individual, society and the environment.
A student demonstrates high-level skills in developing, managing and documenting software engineering projects.
[bookmark: _Int_0LDvprXT]A student communicates logically using appropriate terms, conventions and methods.

	C
	[bookmark: _Int_4xfL41Tl]A student demonstrates sound knowledge and skill in the application of data, tools and resources to develop a software engineering solution.
A student demonstrates sound knowledge and skill in the development, testing and implementation of safe and secure code.
A student demonstrates sound knowledge and understanding of the social/ethical and/or legal implications of the application of software engineering solutions.
A student displays sound skills in developing software engineering projects.
A student communicates using sound terms and conventions and/or methods.

	D
	[bookmark: _Int_lYGqyA5K]A student demonstrates basic knowledge and skill in the application of data, tools and resources to develop software.
A student demonstrates basic knowledge and skill in the development, testing and implementation of safe and secure code.
A student displays basic skills in developing software.
A student communicates with a basic use of terms.

	E
	A student displays limited skills in developing a software engineering project.
A student communicates with limited use of terms.

NSW Department of Education	
Software Engineering Stage 6 (Year 12) – sample assessment task 3 notification – Software engineering project | 2
Common Grade Scale for Preliminary Courses
[image: NSW Government logo.]
© NSW Department of Education, May-24	2	
© NSW Department of Education, May-24	[image: Creative Commons Attribution license logo.]
[bookmark: _Toc165551207]Student-facing rubric
Table 3 – rubric for Components A and B – project documentation and software solution
	Section
	Limited
	Basic
	Sound
	High
	Outstanding

	1. Identifying and defining
	Minimal identification of the project's problem and needs, requirements and limitations and applicable tools and processes.
	Basic definition and understanding of the project's scope including problem and needs, feasibility, boundaries and applicable tools and processes.
	Sound description of the project's requirements and chosen opportunity including problem feasibility, boundaries and applicable tools and processes.
	Comprehensive explanation and rationale supporting the project's selection including needs, feasibility, boundaries and applicable tools and processes.
	Comprehensive analysis of the problem. Insightful detail explaining the client's functional needs and requirements including feasibility and boundaries.

	2. Researching and planning
	Minimal understanding of the role of planning and modelling tools in project development.
	Basic creation of a project management that uses planning and modelling tools.
	A sound project management plan using planning and modelling tools where necessary.
	Detailed project management plans including key planning and modelling tools as well as client correspondence.
	Comprehensive project management plans. Use of all relevant planning and modelling tools, including responding to client correspondence.

	3. Producing and implementing
	Minimal attempt at a software solution.
	An attempt at a software solution that meets basic needs.
	A software solution that meets the clients’ basic needs. Proposes an addition. Includes an appropriate development approach.
	[bookmark: _Int_C7CzDj2k]Functional software solution meeting client requirements. Uses code optimisation, demonstrates version control and proposes an additional solution. Includes an appropriate development approach.
	[bookmark: _Int_V0BRhita]Fully functional software solution surpassing client requirements, uses code optimisation, demonstrates version control, proposes an additional innovative solution and an appropriate development approach.

	4. Testing and evaluating
	Identifies basic testing outcomes without much insight.
	Defines effectiveness of the software with some evaluation.
	Describes the software's performance with reference to problem definition and need.
	Explains the software's effectiveness and necessary improvements based on testing.
	Clear evidence of analysis and response to feedback. Evaluates software performance thoroughly, providing detailed feedback for future modifications.

Table 4 – rubric for Component C – presentation
	Item
	Limited
	Basic
	Sound
	High
	Outstanding

	[bookmark: _Int_ccDkGCoF]Software features, benefits and challenges
	[bookmark: _Int_5nyp67mR]Minimal to no description of the software’s features, benefits or challenges.
	[bookmark: _Int_DAFsOvfZ]Basic description of the software’s features, benefits and challenges. Provides a simple outline of how this was achieved.
	[bookmark: _Int_Rey1GKbJ]Sound overview of the software’s features, benefits and challenges with examples. Some explanation of how this was achieved.
	[bookmark: _Int_qmCpBkC8]Detailed presentation of the software's features, benefits and challenges. Detailed explanation of how this was achieved.
	Comprehensive and insightful presentation of the software’s features, benefits, and challenges with clear links to improvement and future development. Thorough explanation of how this was achieved.

	How the Software meets the project requirements and the user needs
	Provides limited to no information to demonstrate how the software meets requirements or client needs.
	Provides a basic connection between the software and project/client needs with minimal evidence.
	Clearly outlines how the software addresses project requirements and client need, with some examples.
	Effectively demonstrates the software’s alignment with project requirements and client need, supported by specific examples.
	Excellent justification of a comprehensive match between the software and project requirements and client need, with detailed evidence.

Software Engineering Stage 6 (Year 12) – sample assessment task 3 notification – Software engineering project | 6

© NSW Department of Education, May-24	[image: Creative Commons Attribution license logo.]
[bookmark: _Toc157079164][bookmark: _Toc165551208][bookmark: _Hlk115937726]Student support material
[bookmark: _Toc165551209]Scenarios for students who do not have a client
[bookmark: _lgh1aggendz][bookmark: _71b94rnrlrut][bookmark: _Toc143615164]Scenarios where clients could be simulated by the teacher or classmates could include:
online prefect voting system
canteen ordering app
market day business studies website
school musical booking system
a biometric roll call attendance system (controversial)
school jersey and name design app
sports carnival administration system
event management system
an interactive school map and timetable.
These should be expanded into detailed scenarios to provide guidance for students to:
extract functional requirements
model with tools
develop software solutions and innovative prototypes.
The following 2 scenarios demonstrate the depth of detail required to identify, define and analyse to produce and implement a software engineering solution.
[bookmark: _Toc165551210]Scenario 1 – parking roster
Warami High School has an exceedingly small staff car park. They have a total of 30 spaces allocated for 120 staff members (including Student Administration and Support), split across the 10 faculties of:
English – 15 teachers
Mathematics – 13 teachers
Science – 10 teachers
Technological and Applied Studies (TAS) – 12 teachers
Creative and Performing Arts (CAPA) – 7 teachers
[bookmark: _Int_GRaP4LHb]Personal Development, Health and Physical Education (PD/H/PE) – 7 teachers
History and Languages – 7 teachers
Human Society and Its Environment (HSIE) – 9 teachers
Learning Support – 6 teachers
Student Administration and Support – 34 staff members
The number of teachers for each faculty is given above. There are a total of 10 files provided, one representing each faculty, that need to be read into the program. In each file, there are the names of each of the teachers.
A timetable of how many spaces each faculty gets per day as well as who gets what spot each day for a 2-week cycle needs to be generated.
The program must:
present a form for the user to select the files containing the names for each faculty
read the names of each of the teachers in each of the faculties from the files
display which faculty has what spaces on particular days linked to the teachers’ names, using a graphical method such as a block of colour or a picture of a car in a car park.
enable the user to click on ‘Monday’ and get the allocations for Monday, or ‘Tuesday’ for Tuesday’s allocations and so on.
Note: Teachers do not have to be allocated the same days in a row, nor do they have to have the same parking spots each time.
The program should also:
ensure that 50% of each faculty is allocated a parking spot in the fortnight
give the user the option to either read the names of each teacher from the files, or to enter each teacher’s name manually with the number of days each teacher is in per fortnight
have a menu system that allows the user to switch between the default mode as specified in the ‘must’ section, and this optional mode.
The program could also:
ensure that 70% of each faculty is allocated a parking spot in the fortnight
allow the user to change the number of staff members per faculty so long as the total of 120 staff members is reached. This means that the user should be presented with a form with each faculty name and an associated input box with how many staff members are in each faculty
increase or decrease the number of total staff members in the school car parking timetable. This should in turn check to see that the total entered does not exceed the number of total staff members.

[bookmark: _Toc165551211]Scenario 2 – typing tutor game
There is a lot of vocabulary in the Software Engineering course. There are also a lot of large, complex assessment tasks like this one which require a lot of typing. A typing game which builds up the vocabulary of the students studying Software Engineering, as well as keyboard skills, is required to bridge this gap. Technical vocabulary for this typing program is to be derived from the topics of:
Programming fundamentals – 10 pieces of technical vocabulary
Object-oriented programming – 10 pieces of technical vocabulary
Programming mechatronics – 10 pieces of technical vocabulary
Secure software architecture – 10 pieces of technical vocabulary
Programming for the web – 10 pieces of technical vocabulary
Software automation – 10 pieces of technical vocabulary
[bookmark: _Int_BYVaWYp8]In addition, definitions and exemplar paragraphs for each of the below NESA key terms need to be included in the typing tutor program.
Identify
Define
Describe
Explain
Analyse
Justify
Evaluate
These exemplar paragraphs are to be read from data files provided.
Additional exercises that train students on how to place their hands on the home row, feel for the bumps on F and J, punctuation marks and so on must also be included. Some examples of typing programs are given here:
Speed Typing Online (https://www.speedtypingonline.com/typing-tutor)
Typing Trainer (https://www.typingtest.com/trainer/)
Typing Academy (https://www.typing.academy/).
The program must:
read the provided data file for the NESA key term exemplar paragraphs
progress the students, from training them how to place their hands on the home row to typing in key words, then whole sentences and paragraphs
calculate their words per minute and percentage (%) of accuracy
contain at least 5 levels, from absolute beginner at Level 1 to typing in whole sentences and paragraphs at Level 5.
The program should also:
give the administrator of the typing tutor the option of entering the technical vocabulary for each of the given Software Engineering topics into a form, which then gets written into at least one file
read the technical vocabulary for each topic from the data file generated by the program.
The program could also:
contain up to 10 levels, slowly progressing from absolute beginner at Level 1 to expert at Level 10, where the students are typing in exemplars of code that perform various tasks from Object-oriented programming such as
class definition and object instantiation
polymorphism
inheritance and/or Secure software architecture to create MD5 hashes such as those in Python or in JavaScript
AES encryption and decryption ciphers in Python, or PGP encryption and decryption in Python and OpenPGP in JavaScript as typing practice
read these code exemplars from data files made for the program.
Note: the exemplars given below for each key term are a guide for students to model their responses on.
Table 5 – NESA key terms
	NESA key term
	Definition
	Example

	Identify
	Recognise and name.
	The computer has Microsoft Office 365, Chrome, Internet Explorer and so on.

	Define
	State meaning and identify essential qualities.
	The computer has Microsoft Office 365, which has programmes such as Word, Excel, Access and PowerPoint. Internet Explorer and Chrome are also there, which serve as the main web browsers.

	Describe
	Provide characteristics and features.
	The computer runs Office 365, Chrome, Internet Explorer and so on. They are all applications which are pre-installed on the computer. Chrome and Internet Explorer are web browsers that allow access to Office 365, email, ManageBac and so on. Office 365 is on the computer, though it can also run through a web browser, meaning you can access it at anytime, anywhere.

	Explain
	Relate cause and effect; make the relationships between things evident; provide why and/or how.
	The applications Office 365, Internet Explorer and Chrome are on the computers. Office 365 contains applications such as Word, Excel and Access which are available both at school and online through Internet Explorer and Chrome. Internet Explorer and Chrome are both web browsers, which are not only used to provide access to Office 365, but also to information and YouTube videos to help with assessments from anywhere, at any time.

	Analyse
	Identify components and the relationship between them; draw out and relate implications.
	Office 365, Internet Explorer, and Chrome are on the computers. Internet Explorer and Chrome are both web browsers, which provide a graphical interface to the information and content available online. Some of that content includes, but is not limited to, the Office 365 application suite, allowing students to access Word, Excel, PowerPoint and so on anywhere, at any time. These are accessible inside the Office 365 interface through easily identifiable web-based versions of these applications; the computer-based versions of these applications are more powerful.

	Justify
	Support an argument or conclusion.
	Office 365, Internet Explorer, and Chrome are on the computers. Internet Explorer and Chrome are both web browsers, which provide a graphical interface to the information and content available online. Some of that content includes, but is not limited to, the Office 365 application suite, allowing students to access Word, Excel, PowerPoint and so on anywhere, at any time. This easy access allows students to complete school assessments and tasks without being in any way disadvantaged by needing to have the Office suite installed on their own computers, behaving much like the applications on the desktop machines at school.

	Evaluate
	Make a judgement based on criteria; determine the value of.
	[bookmark: _Int_6lzYk9Er]Office 365, Internet Explorer, and Chrome are on the computers. Internet Explorer and Chrome are both web browsers, which provide a graphical interface to the information and content available online. Some of that content includes, but is not limited to, the Office 365 application suite, allowing students to access Word, Excel, PowerPoint and so on anywhere, at any time. This easy access allows students to complete school assessments and tasks without being in any way disadvantaged by needing to have the Office suite installed on their own computers, behaving much like the applications on the desktop machines at school. The main advantage of this open access is the reduction in gaps between those who have access to the Office suite and those who do not, meaning less excuses for those who may have used this lack of access in the past. However, this also may reduce skill sets or exposure to other application suites such as OpenOffice which some may perceive as a failing of being homogenous.

Glossary of key words © NSW Education Standards Authority (NESA) for and on behalf of the Crown in right of the State of New South Wales, 2024.

[bookmark: _Toc159418711][bookmark: _Toc165551212][bookmark: _Toc147840979]Additional information
This resource has been developed to assist teachers in NSW Department of Education schools to create learning that is contextualised to their classroom. It can be used as a basis for the teacher’s own program, assessment, or scope and sequence, or be used as an example of how the new curriculum could be implemented. The resource should be used with timeframes that are created by the teacher to meet the overall schedules of assessment.
For additional support or advice, contact the TAS curriculum team by emailing TAS@det.nsw.edu.au.
[bookmark: _Toc159418712][bookmark: _Toc165551213]Assessment advice
Assessment is a powerful tool to measure student learning and plan for the next stages in the learning process. Some considerations in using parts of this assessment notification are:
· Consider the skills, knowledge, and understanding students need to complete the task, and see where there are opportunities for them to refine these through ongoing feedback in the learning sequences associated with the assessment task.
· Ensure the language and readability of the task presents an appropriate challenge for the students the task is being used with. Direct, plain English will allow the greatest number of students to access the task independently.
· Marking guidelines should directly reflect the success criteria and outcomes of the task and align with appropriate levels of achievement for the relevant stage.
· When constructing or adjusting the marking guidelines and/or rubric, try to keep active verbs like ‘do’, ‘say’, ‘make’, or ‘write’ in mind to measure student performance at each level. This will help to avoid subjective language.
[bookmark: _Toc159418713][bookmark: _Toc165551214]Assessment as a learning opportunity
Assessment can provide ways for students to use formal and informal feedback and self-assessment to help them understand where they are in their learning, where they are going, and how they are going to get there. It is essential that students receive feedback on their performance in the task and have opportunity to clarify and plan the next steps in learning.
· Clear and explicit marking rubrics can support effective self-assessment in relation to the learning intentions and success criteria assisting students to become owners of their own learning. Students can then build their capacity for individual goal setting, which includes students asking questions such as, ‘What do I need to improve?’ and ‘What is my next step?’ (CESE Growth goal setting – what works best in practice).
· Greater learning gains may be made when teachers provide explicit descriptive feedback to students in a timely manner. This feedback supports students in forming their learning goals as well as helping the teacher to plan for the next iteration of the teaching and learning cycle.
[bookmark: _Toc159418714][bookmark: _Toc165551215]Differentiation advice
Differentiated learning can be enabled by differentiating the assessment approach to content, process and product. Reasonable adjustments of assessment for students with disability is a legal requirement under the Disability Standards for Education 2005 (Cth). For students with a disability, adjustment in assessment tasks should be made through the Collaborative curriculum planning process. For more information on differentiation, go to Differentiating learning and Differentiation. When using this resource, teachers can use a range of adjustments to ensure a personalised approach to student learning.
· Some common adjustments are available through the Inclusive Practice hub assessment and reporting site.
· The HPGE Differentiation Adjustment Tool and Differentiation Package can assist teachers to decide how to provide extension and additional challenge for High Potential and Gifted (HPG) students.
The steps below may be useful to consider when creating access opportunities for all students:
· remove unnecessary words/images
· simplify any tricky words, or make a glossary of subject-specific words
· reduce the lexical density of the steps and use student-friendly language
· chunk large passages of reading or offer alternate ways of representing the information, such as a visual
· make the task description a checklist with numbered steps
· limit options and/or reduce the number of choices students need to make independently.
[bookmark: _Toc165551216]Support and alignment
[bookmark: _Int_y3ecu8KV]Resource evaluation and support: all curriculum resources are prepared through a rigorous process. Resources are periodically reviewed as part of our ongoing evaluation plan to ensure currency, relevance and effectiveness. For additional support or advice contact the TAS curriculum team by emailing TAS@det.nsw.edu.au.
Differentiation: further advice to support Aboriginal and Torres Strait Islander students, EAL/D students, students with a disability and/or additional needs and High Potential and gifted students can be found on the Planning, programming and assessing 7–12 webpage. This includes the Inclusion and differentiation advice 7–10 webpage.
Assessment: further advice to support formative assessment is available on the Planning, programming and assessing 7–12 webpage. This includes the Classroom assessment advice 7–10. For summative assessment tasks, the Assessment task advice 7–10 webpage is available.
Consulted with: Curriculum and Reform and subject matter experts
Alignment to system priorities and/or needs: School Excellence Policy
Alignment to the School Excellence Framework: this resource supports the School Excellence Framework elements of curriculum (curriculum provision) and effective classroom practice (lesson planning, explicit teaching).
Alignment to Australian Professional Standards for Teachers: this resource supports teachers to address Australian Professional Standards for Teachers 3.1.2, 3.3.2, 3.4.2, 5.1.2.
NSW Syllabus: Software Engineering 11–12
Syllabus outcomes: SE-11-01, SE-11-02, SE-11-03, SE-11-04, SE-11-05, SE-11-06, SE-11-07, SE-11-08, SE-11-09
Author: TAS, Curriculum Secondary Learners, Curriculum Reform
Publisher: State of NSW, Department of Education
Resource: assessment task notification
Related resources: further resources to support Software Engineering 11–12 can be found on the TAS curriculum page.
Professional learning: relevant professional learning is available through HSC Professional Learning or in the TAS statewide staffroom.
Creation date: 2024
Rights: © State of New South Wales, Department of Education

[bookmark: _Toc165551217]Evidence base
This document contains NSW Curriculum and syllabus content. The NSW Curriculum is developed by the NSW Education Standards Authority. This content is prepared by NESA for and on behalf of the Crown in right of the State of New South Wales. The material is protected by Crown copyright.
Please refer to the NESA Copyright Disclaimer for more information https://educationstandards.nsw.edu.au/wps/portal/nesa/mini-footer/copyright.
NESA holds the only official and up-to-date versions of the NSW Curriculum and syllabus documents. Please visit the NSW Education Standards Authority (NESA) website https://educationstandards.nsw.edu.au/ and the NSW Curriculum website https://curriculum.nsw.edu.au.
Software Engineering 11–12 Syllabus © NSW Education Standards Authority (NESA) for and on behalf of the Crown in right of the State of New South Wales, 2022.
Software Engineering 11–12 Course Specifications © NSW Education Standards Authority (NESA) for and on behalf of the Crown in right of the State of New South Wales, 2022.
Brookhart SM (2018) ‘Appropriate Criteria: Key to Effective Rubrics’, Frontiers in Education, volume 3(22):1–12, doi:10.3389/feduc.2018.00022, accessed 3 April 2024.
Campos P (27 April 2020) ‘AES Implementation in Python’, Medium, accessed 11 April 2024.
CESE (Centre for Education Statistics and Evaluation) (2020) What works best: 2020 update, NSW Department of Education, accessed 3 April 2024.
CESE (2020) What works best in practice, NSW Department of Education, accessed 3 April 2024.
CESE (2021) Growth goal setting – what works best in practice, NSW Department of Education, accessed 3 April 2024.
Cloud Kayak Labs (n.d.) ‘Typing Trainer’, Typing Lessons, Typing Test website, accessed 11 April 2024.
Cord Bolte (n.d.) Typing Academy [website], accessed 11 April 2024.
Delgado C (9 July 2021) ‘How to create MD5 hashes in JavaScript’, Our Code World, accessed 11 April 2024.
Fisher D and Frey N (1 November 2009) ‘Feed Up, Back, Forward’, ASCD (Association for Supervision and Curriculum Development): Educational Leadership magazine, 67(3), accessed 3 April 2024.
GeekforGeeks (2023) MD5 hash in Python, GeeksforGeeks website, accessed 11 April 2024.
Griffin P (2017) Assessment for Teaching, Cambridge University Press, Port Melbourne, Victoria.
Hattie J and Timperley H (2007) ‘The Power of Feedback’, Review of Educational Research, 77(1): 81–112, doi:10.3102/003465430298487.
MLGray LLC (n.d.) 'Typing Tutor', Learn to Type, Speed Typing Online website, accessed 11 April 2024.
Mustafic A (26 July 2021) 'PGP key pair generation and encryption and decryption examples in Python 3', Medium, accessed 11 April 2024.
OpenPGP JavaScript Implementation (2018) openpgpjs, GitHub website, accessed 19 April 2024.
[bookmark: _Int_40mE6ZhT]Panadero E and Jonsson A (2013) ‘The use of scoring rubrics for formative assessment purposes revisited: A review’, Educational Research Review, 9:129–144, doi:10.1016/j.edurev.2013.01.002, accessed 3 April 2024.
Sherrington T (2019) Rosenshine’s Principles in Action, John Catt Educational Limited, Melton, Woodbridge.
Wiliam D (2017) Embedded Formative Assessment, 2nd edn, Solution Tree Press, Bloomington, IN.
Software Engineering Stage 6 (Year 12) – sample assessment task 3 notification – Software engineering project | 8

© NSW Department of Education, May-24	[image: Creative Commons Attribution license logo.]
© State of New South Wales (Department of Education), 2024
The copyright material published in this resource is subject to the Copyright Act 1968 (Cth) and is owned by the NSW Department of Education or, where indicated, by a party other than the NSW Department of Education (third-party material).
Copyright material available in this resource and owned by the NSW Department of Education is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
[image: Creative Commons Attribution license logo.]
This license allows you to share and adapt the material for any purpose, even commercially.
Attribution should be given to © State of New South Wales (Department of Education), 2024.
Material in this resource not available under a Creative Commons license:
· the NSW Department of Education logo, other logos and trademark-protected material
· material owned by a third party that has been reproduced with permission. You will need to obtain permission from the third party to reuse its material.
Links to third-party material and websites
Please note that the provided (reading/viewing material/list/links/texts) are a suggestion only and implies no endorsement, by the New South Wales Department of Education, of any author, publisher, or book title. School principals and teachers are best placed to assess the suitability of resources that would complement the curriculum and reflect the needs and interests of their students.
If you use the links provided in this document to access a third-party's website, you acknowledge that the terms of use, including licence terms set out on the third-party's website apply to the use which may be made of the materials on that third-party website or where permitted by the Copyright Act 1968 (Cth). The department accepts no responsibility for content on third-party websites.

image2.png

image1.png
<

image3.png

image4.png
NSW

GOVERNMENT

image5.svg

