
CODING AND 
COMPUTATIONAL 
THINKING
What is the Evidence? 

education.nsw.gov.au



2

About the research team

James Curran is an Associate Professor in the School 
of Information Technologies, University of Sydney. 
He is Director of the National Computer Science 
School (NCSS), the largest computer science school 
outreach program in Australia. Last year, over 10,000 
students and teachers participated in the 5-week 
NCSS Challenge. James is a co-founder of Grok 
Learning, an Edtech startup that aims to teach 
children everywhere how to code. He was a writer 
on the Australian Curriculum: Digital Technologies, 
the new national computing curriculum. In 2014, 
James was named ICT Leader of the Year by the ICT 
Educators of NSW and the Australian Council for 
Computers in Education.

Karsten Schulz is an Associate Professor in the 
School of Information Technologies, University of 
Sydney. Karsten has a PhD in Computer Science and 
a Bachelor in Electrical Engineering with a focus 
on Software Engineering. For 10 years, Karsten led 
the research division of a large multi-national ICT 
company in Australia and the Asia-Pacific Region 
and between 2013 and 2016 he led the national 
Digital Careers Program. In 2010, Karsten created 
the Young ICT Explorers Competition and in 2014 
he founded the Bebras Australia Computational 
Thinking Challenge which is part of the international 
Bebras Challenge.

Amanda Hogan is the current president of ICT 
Educators NSW which is the professional association 
for computing teachers in NSW. She is a secondary 
Computing Teacher at Tara Anglican School for Girls. 
She has come to teaching after working in the IT 
industry most recently at Microsoft Australia. Amanda 
is an active tutor and content creator in the Girls’ 
Programming Network Sydney Chapter. She runs the 
Maths, Coding and Robotics clubs at school and is 
a keen programmable electronics hobbyist. In 2015, 
Amanda was named ICT Teacher of the Year by the 
ICT Educators of NSW.

About the Australian Computing Academy

The University of Sydney leads the Australian 
Computing Academy to provide the intellectual, 
technical, and practical leadership needed to fulfil 
the ambitious goals of the Australian Curriculum: 
Digital Technologies. This includes working directly 
with jurisdictions and systems as they implement the 
Digital Technologies curriculum. For more information 
about the Academy please visit aca.edu.au. 

Australian Computing Academy

A/Prof James R. Curran 
A/Prof Karsten A. Schulz 
Amanda Hogan

Faculty of Engineering and Information Technologies 
The University of Sydney, NSW 2006 
A/Prof James R. Curran 
Phone: (02) 9036 6037 / 0431 013 320  
james.r.curran@sydney.edu.au 
aca.edu.au 

©  State of New South Wales (Department  
of Education), 2019. Education for a Changing 
World is an initiative of the NSW Department 
of Education. The project aims to stimulate 
informed discussions about the policies and 
reforms that we may need to set in motion now 
to ensure education best prepares young people 
to successfully navigate a more complex world. 
As part of this initiatve the Department has 
commissioned this report. The views expressed 
are solely those of the authors.



3

Table of Contents

Introduction� 5

Overview� 5

About this report� 5

Part 1: Defining computational thinking and coding in Australian education contexts � 6

Computational thinking� 6

Coding� 7

Digital Technologies Curricula in Australia and NSW� 7

The Australian Curriculum: Digital Technologies� 7

NSW Syllabus� 8

Part 2: The Australian and global contexts: The increasing importance of  
computational thinking and coding � 9

Historical context� 9

Australian perspective� 9

Global perspective� 9

Relating historical success factors to the present� 10

Appropriate programming language tools and resources� 10

Proper use of computers� 11

Purposeful context that students can identify with� 11

Teacher competence and confidence � 12

Summary� 12

The tertiary sector and the IT industry � 13

Dot-com boom (and bust)� 13

University enrolment trends� 14

Jobs� 15

Summary� 17

European Union policy analysis� 17

Student assessment� 18

Implementation in national curricula � 18

Implementation framework� 18

International case studies � 21

Estonia� 21

Finland� 22

United Kingdom� 22

South Korea� 24

Summary� 24



4

Part 3: Implications for teaching and learning� 25

Implications for teaching and teacher professional development� 25

Professional development of teachers in computational thinking in Australia� 26

Unpacking the Australian Curriculum: Digital Technologies� 26

Resources� 27

Train the trainer� 27

Online courses� 28

Supporting disadvantaged schools� 28

Professional development of teachers in coding and computational thinking in the US� 28

Professional development of teachers in coding and computational thinking in England� 29

Lessons for Australia� 29

Implications for student learning outcomes� 30

Pedagogy� 30

The role of computers and laptops� 30

Measuring computational thinking � 35

Interpretation � 37

Key themes for future consideration� 39

Bibliography� 41



5

Introduction

Overview

This report has been commissioned by the 
NSW Department of Education's Education for 
a Changing World initiative. It investigates the 
available evidence on the teaching of coding and 
computational thinking for student outcomes 
and explores and critiques what works in the 
implementation of coding and computational 
thinking within an educational context. 

About this report

This report addresses the following areas, 
summarising the relevant research literature and 
evidence base as available:

•	 Definitions of coding, computational thinking 
and related computing terminology, especially 
with respect to the Australian Curriculum: 
Digital Technologies, the Australian Curriculum: 
Information and Communication Technology 
(ICT) Capability, and current and soon to be 
implemented NSW Education Standards 
Authority (NESA) syllabi

•	 Analysis of the history of coding and 
computational thinking in the classrooms dating 
back to the 1970s. Reflection on the momentum 
(or hype) surrounding coding and computational 
thinking with reference to Australian and 
international job projections, and the use of 
coding across careers and learning areas

•	 Analysis of evolving computing curricula 
internationally and the place of the Australian 
Curriculum and NSW syllabi within that

•	 Discussion of the learning outcomes (both 
learning-area specific and general capability) of 
teaching coding and computational thinking to 
all students across both digital technologies and 
integrated into other curriculum areas 
 

•	 Summary of best-practice for teaching coding 
and computational thinking effectively 
to students including the use of learning 
progressions, technology tools and programs, 
unplugged activities and other resources. We 
also summarise the range of resources already 
available in Australia to support the digital 
technologies curriculum and

•	 Summary of state, national and international 
efforts in providing teachers with support and 
professional development for teaching coding 
and computational thinking, the small number 
of teachers with existing coding skills.

This report is intentionally broad, rather than narrow 
and technical, in order to provide a comprehensive 
overview of the aspects to be considered in 
formulating (i) a strategic vision for teaching coding 
and computational thinking in NSW public schools 
and (ii) in light of the report’s target audience of 
policymakers, school leaders and non-specialists. 
The report concludes with proposed areas for future 
consideration.



6

Part 1: Defining computational thinking and coding in 
Australian education contexts 

In schooling contexts, coding and computational 
thinking are taught in subjects such as digital 
technologies, computer science, informatics, 
computer programming, robotics, information and 
software technology, information processes and 
technology and software design. For the purpose of 
this report we will primarily use the contemporary 
Australian term digital technologies. When referring 
to an historical or international context, we will use 
the US term computer science.

Computational thinking

The Australian Curriculum, Assessment and 
Reporting Authority (ACARA) defines computational 
thinking as a “problem-solving method that 

involves various techniques and strategies 

that can be implemented by digital systems. 

Techniques and strategies may include 

organising data logically, breaking down 

problems into parts, defining abstract concepts 

and designing and using algorithms, patterns 

and models” (ACARA Glossary).

In defining computational thinking, the NSW 
Education Standards Authority (NESA) refers to 
the work of Jeannette Wing (2010, p. 1) and defines 
computational thinking as “the thought processes 
involved in formulating problems and their 

solutions so that the solutions are represented in 

a form that can be effectively carried out by an 

information-processing agent."

Contrary to the scientific/mathematical 
approach to problem-solving, in which 
a solution to a problem is generally 
expressed as an integrated formula, a 
computational-algorithmic solution to 
a problem involves a sequence of steps. 
Due to this step-by-step response to 

problem-solving, computer algorithms 
can be used to reflect on, and pose 
solutions to, complex real-world 
scenarios  such as data sorting, without 
which databases would not work 
and therefore search engines such as 
Google could not exist.  

At the core of the computational thinking approach 
sits the belief that a solution to a problem can be 
obtained by a repeated cycling over the problem. 
Each cycle results in incremental solutions that, 
fed back into the solution process produce a slow 
shift, eventually leading to a solution to the original 
problem. This is a fundamental difference between 
the computational thinking approach and all other 
thinking approaches presently taught at school.



7

Coding

The Australian Curriculum: Digital Technologies does 
not define coding and only refers to programming 
in the context of object-oriented, visual or general-
purpose text programming (ACARA Glossary). 

�Generally, coding is an activity that 
converts a piece of information from 
one representation into another. In 
contrast, computer programming is the 
process of designing, writing, testing, 
debugging, and maintaining the source 
code of computer programs.  

Historically, coding was simply seen as the last 
step to writing a computer program based on the 
specifications of a designer - usually a computer 
architect. This approach to coding has since been 
replaced by an iterative approach where a rapid 
succession of design-implement-debug-test phases 
leads to a solution. Increasingly, the designer of 
a computer program is also responsible for its 
implementation, debugging and testing. Coding has 
therefore become a synonym for programming. 

Coding is done through the use of programming 
languages. A programming language is needed 
to translate a human representation such as a 
flowchart, text or pseudocode into a representation 
that a computer can understand and execute. 
Popular programming languages currently include 
Python, JavaScript and C/C++. Generations of 
computer scientists have developed abstraction 
layers, frameworks, libraries and programming 
languages to streamline programming. Historically, 
the early computer engineers had to move wires 
to program a loop in binary that would instruct the 
computer hardware to perform a multiplication 
through repeated addition.  In contrast, today’s 
programmers only have to press the ‘*’ character on 
their keyboards to achieve the same outcome. 

As will be explored throughout this report, there is no 
established consensus if and to what extent learning 
coding influences the development of higher-order 
computational thinking. According to Mohaghegh 
& McCauley (2016) and Grover (2013) learning 
with programming languages such as Scratch, 
Massachusetts Institute of Technology’s (MIT) App 
Inventor, Kodu and Alice can help primary school 
students  rapidly construct working programs and 
apps. Mohaghegh & McCauley argue that while this 
is “advantageous in learning programming skills, the 
degree of conceptual knowledge obtained through 
using these tools can be questioned, specifically to 
what extent students learn computational thinking 
skills” (2016, p. 1527). Rather than simply learning the 
syntax of a language, Grover (2013) advocates for a 
focus on solution construction and exploration of 
why some solutions are more effective than others. 
Grover suggests this approach allows young students’ 
learning ability and creativity to be developed 
alongside computational thinking skills.

Digital Technologies Curricula in 
Australia and NSW

The Australian Curriculum: Digital Technologies

The Australian Curriculum: Digital Technologies is 
a new national subject within the Technologies 
learning area. The subject is mandatory from 
Foundation (Kindergarten in NSW) to Year 8, with 
elective offerings following for Year 9/10 students. 
Digital technologies was endorsed on 18 September 
2015 by the Education Council, with jurisdictions 
committing to implementing the curriculum from 
2016.

The digital technologies curriculum includes 
fundamental ideas from the academic disciplines 
of computer science, information systems and 
informatics. The curriculum states: 

"In a world that is increasingly digitised and 
automated, it is critical to the wellbeing and 
sustainability of the economy, the environment 



8

and society, that the benefits of information 
systems are exploited ethically. This requires deep 
knowledge and understanding of digital systems 
(a component of an information system) and how 
to manage risks. Ubiquitous digital systems such 
as mobile and desktop devices and networks are 
transforming learning, recreational activities, home 
life and work. Digital systems support new ways of 
collaborating and communicating, and require new 
skills such as computational and systems thinking. 
These technologies are an essential problem-solving 
toolset in our knowledge-based society" (ACARA, 
Digital Technologies subject rationale).

The developmental progression of learning in the 
subject is captured in the content descriptions for 
each band and held together by a collection of 
conceptual threads.  This work is set out in the PDF 
document available on the Australian Curriculum 
website and includes:

•• Abstraction (underpins all other key concepts)

•• Digital technologies knowledge and 
understanding:

–– Digital systems

–– Data representation

•• Digital technologies processes and production 
skills:

–– �Collecting data and interpreting 
data

–– Specification (defining a problem)

–– Algorithms

–– �Implementation (computer 
programming or coding)

–– Impact 1

–– Interactions 2

1 Analysing and predicting how existing and created 
systems meet needs, affect people, and change society 
and the world.
2 How users experience and interface with digital systems, 
and how we use them to communicate and collaborate.

While the digital technologies curriculum does not 
refer to computational thinking on a frequent basis, 
the stages of the design process correspond strongly 
to the main aspects of computational thinking 
(defined above).

Most Australian jurisdictions formally reported 
against this curriculum from 2018.

NSW Syllabus

The NSW Syllabi for Stages ES1-3 (Science and 
Technology) and Stage 4 (Technology (Mandatory)) 
were released in December of 2017 with 
implementation mandated for 2019. The Technology 
(Mandatory) Years 7-8 syllabus combines the 
Australian Curriculum: Design Technologies and 
Digital Technologies. 

Digital technologies makes up at least 50 hours of 
the broader Technology (Mandatory) syllabus. It has 
a similar shape to the Australian Curriculum with 
the inclusion of knowledge and understanding and 
design and production skills student outcomes. 

In primary education the digital technologies 
curriculum has been incorporated into the new 
science and technology syllabus, which has 
knowledge and understanding and skills as 
categories for student outcomes.

https://acaraweb.blob.core.windows.net/resources/Digital_Technologies_-_Sequence_of_content.pdf
https://acaraweb.blob.core.windows.net/resources/Digital_Technologies_-_Sequence_of_content.pdf


9

Part 2: The Australian and global contexts: The 
increasing importance of computational thinking and 
coding 

Historical context

Pre-university computer science education started 
in the 1970s. The computer science teachers of the 
1970s and 1980s were mostly mathematics and 
physics teachers who viewed computer science 
as extension of their respective fields. This is the 
reason why mathematics and physics dominated 
the early-use cases. In this section, we consider both 
Australian and global historical perspectives.

Australian perspective

In world terms, Australia moved into educational 
computing both at the higher education and school 
levels very early. University computing in Australia 
started in 1947 with the University of Sydney’s 
course ‘The Theory of Computation, Computing 
Practices, and Theory of Programming’. In 1949, the 
Radiophysics Laboratory at the CSIRO in Sydney 
released Australia’s first and the world’s fourth digital 
computer, the Council for Scientific and Industrial 
Research Automatic Computer (CSIRAC). The 1960s 
saw several key computing personnel moving from 
industry to academia to set up computing courses 
(Tatnall & Davey, 2004). “From 1965, computing 
courses became ‘respectable’ and were soon widely 
available” (Tatnall & Davey, 2004, p. 3). It was in the 
early 1970s that school computing began to emerge, 
usually as a result of teachers being exposed to 
computing during their university studies. “In 1972, 
for example, Burwood High School was loaned a 
PDP-8 computer by Digital Equipment [...]. In 1973 
McKinnon High School received an Innovations 
Grant to enable the purchase of an 8k Wang 
computer costing over $10,000 (AUS) [...]. The biggest 
impact on schools, however, was [the] introduction 
of the Monash Educational Computer System 
(MONECS). Before the advent of personal computers 
(PCs) it was impossible for an average school to have 

hands-on access to a computer. In 1974 a group 
at Monash University produced a system [...] that 
allowed a class of 30 children to each get two runs 3 
in a one-hour period (Monash Computing Museum 
2003). The MONECS system was used to teach 
programming in FORTRAN or BASIC. At this stage, 
schools saw computing as a branch of mathematics 
concerned with algorithm design” (Tatnall & Davey, 
2004, p. 4).

With the advent of PCs in the late 1970s and early 
1980s, the foundations of most of the current 
computing curriculum in schools and universities 
were established. PCs lowered the barrier of 
entry into computing for schools and universities 
significantly as they were more affordable and easier 
to use than mainframes. In 1981 computer science 
was first offered as a Higher School Certificate (HSC) 
subject in Victoria (Tatnall & Davey, 2004, p. 5).

Global perspective

Resnick et al. (2009) describe the historical 
foundation of computer science teaching in the 
classroom. While they do not identify a particular 
country for their work, their descriptions resonate 
with the personal experiences of the authors of 
this paper in Australia and Germany. Personal 
computers were first introduced in the late 1970s 
and 1980s and generated initial enthusiasm for 
teaching children how to program. Thousands of 
schools taught millions of students programming in 
languages such as Logo, Basic and Pascal. 

This initial excitement for computing in the 
classroom soon faded as schools shifted to using 
computers for other purposes. Resnick et al. (2009) 
argue that the reason for this was that (i) early 

3 Two runs likely refers to two attempts of running a 
program on the computer.



10

programming languages were too difficult to use 
and that many children couldn’t master the syntax 
of programming, (ii) programming was often 
introduced alongside abstract activities, such as 
generating lists of prime numbers, that were not 
connected with purpose for the young learners, 
and (iii) a lack of guidance when things went wrong 
or encouragement of deeper exploration when 
things went right. This last point has significant 
implications for teacher competence and 
confidence. 

In summary, from an historical viewpoint, the success 
of computer science education in the classroom 
depends on four factors:

1)	� Appropriate programming language tools 
and resources

2) 	 Appropriate use of computers

3)� 	� Provision of a purposeful context that students 
can identify with

4) 	 Teacher competence and confidence. 

Relating historical success factors to the 
present

In this section we apply the four historical success 
factors from the 1970s and 1980s to the present 
situation in Australia. 

Appropriate programming language tools and 

resources

The Australian Curriculum: Digital Technologies does 
not mandate the use of particular tools and resources 
other than a move from visual programming 
languages to general-purpose programming 
languages which occurs at the end of Year 6.

Visual programming languages, such as Blockly, 
Alice, GameMaker, Kodu, Lego Mindstorms, MIT App 
Inventor and Scratch address vocabulary and syntax, 
key concepts that all learners of languages need 
to learn. In programming language terminology 
the vocabulary refers to the instructions that a 
programmer needs to know to instruct the machine 
to perform a specific task. Examples include data 

types, loops, functions, assignments and operations. 
The syntax of a programming language specifies the 
rules of how the instructions are to be put together 
to form valid constructs that the computer can 
process. This is called grammar in human languages. 
Visual programming languages address vocabulary 
and syntax by providing predefined blocks from 
which students can choose. This is significant, as it 
frees students from needing to know much upfront 
about the programming language. Instead, students 
can choose from a limited set of blocks (vocabulary) 
which only click together in syntactically valid ways, 
thereby supporting accurate learning. 

There are several disadvantages to visual 
programming languages, which the blog by Schulz 
and Fuda (2018) summarises comprehensively. 
The Australian Curriculum: Digital Technologies 
mandates the move to general-purpose (text) 
programming languages from Years 7/8 and up. 
Beyond programming languages themselves there 
is now a growing number of resources and tools 
that are useful (or claim to be useful) in teaching 
primary and secondary students computational 
thinking and/or programming. Education Services 
Australia maintains a curated list of over 700 of these 
resources in the Digital Technologies Hub and maps 
each resource against the content descriptors of the 
Australian Curriculum: Digital Technologies.

Lockwood & Mooney (2017, p. 30) conclude that 
a “huge number and range of tools have been 
developed to assist the teaching of computational 
thinking. These range from music tools to 
programming languages to games. Although several 
of these are in the early stages of development, 
it is encouraging to see so many efforts to make 
computational thinking fun and accessible to 
students of all ages, genders and abilities. The 
benefits for educators are many and include a 
variety of options of how to integrate computational 
thinking into their classrooms. Whether in a 
computer lab, a regular classroom or outside, in a 
one-on-one session or with a class of 30+ there is a 
tool out there which will suit educators’ needs, and 
if there isn’t then the evidence suggests that there 



11

might well be soon!”

In summary, the evidence suggests that there are 
now age-appropriate programming languages to 
help primary-school students begin learning coding. 
This constitutes a significant change compared to 
the 1970s and 1980s when students had to work with 
text-based programming languages which provided 
less assistance around how to produce code. 

Proper use of computers

In recent years, some schools have moved the 
student-related delivery of learning content and 
student-related administration onto computers. In 
Australia, one of the catalysts for this development 
was the Australian Government’s 2008 Digital 
Education Revolution (DER) (Department of 
Education and Training), (ZDNet, 2013), (DEEWR, 
2013). Although this program ended in 2013, it kicked 
off an investment in information technology (IT) 
infrastructure and support that was probably more 
significant in its long-term impact on schools than 
the financial support for the purchase of laptops 
themselves.

The DER program ended more than four years ago 
and most if not all of the laptops have now been 
retired. Today students use their own devices or 
school-provided computers for much if not most of 
their day-to-day learning.

Increasingly, tools such as OneNote are being used 
as a medium for homework, and paper textbooks 
are being replaced by eBooks or PDFs stored on the 
student’s computer. 

Whereas previously computers were 
primarily used for computer science 
education, they are now primarily a 
vehicle for learning content that is not 
related to computer science education.

This has resulted in confusion between information 

and communications technology (ICT) general 

capabilities and coding and computational 

thinking, which can lead to the mistaken belief that 

schools are already teaching digital technologies, 
when really they may only be requiring students have 
access to a computing device.  

The DER mid-program review report (DEEWR, 2013) 
draws no specific correlation between the DER and 
enhanced learning outcomes. The authors point 
out the complexities of measuring educational 
outcomes, due to (i) concurrent implementation of 
reform activities that make it difficult to isolate and 
prove causality, (ii) the lack of control groups, (iii) the 
ramp-up time of DER and therefore the shortness of 
the analysis period and (iv) that the DER targets years 
9-12 students.  In contrast, the National Assessment 
Program Literacy and Numeracy (NAPLAN) is for 
years 3, 5, 7 and 9 and only tests “Reading, Writing, 
Language Conventions (Spelling, Grammar and 
Punctuation) and Numeracy”(DEEWR, 2013, p. 18). 
Instead, the report summarised non-DER related 
studies for which we refer the reader to (DEEWR, 
2013) for a comprehensive overview. We revisit this 
point in the section titled "Implications for student 
learning outcomes." 

Purposeful context that students can identify with

There is general agreement about the importance of 
teaching within a context that students can identify 
with. In the 1970s and 1980s computer science 
emerged as a spin-off from mathematics and physics 
and therefore its teaching drew many examples from 
those disciplines. Since then, computational thinking 
has been applied to almost all aspects of life, 
including astronomy, the environment, health, sports, 
and the economy. In parallel, embedded computing 
systems, such as the Arduino and the Raspberry Pi 
have emerged that enable deployments into the 
application domain that portable and ultra-portable 
laptops and tablets could not achieve. Therefore, 
identifying a context that students find interesting 
is now primarily limited by the imagination and 
domain-expertise of the teacher and not by the 
capability or the cost of technology. 

Lockwood & Mooney (2017) summarise their 
findings concerning the application of coding 
and computational thinking to already existing 



12

subjects, including biology, physics, mathematics 
and English. They conclude “that introducing 
computational thinking doesn’t have to be done 
exclusively through new courses or even through 
computer science. Computational thinking is a 
skill that can be used in a possibly surprising range 
of disciplines and can benefit students studying 
in any area. The ability to break down a problem 
and develop a manageable solution is one that all 
students will find useful in both their academic 
and work lives... Computational thinking can be 
successfully taught in varying topics and subjects 
which can be especially helpful to educators dealing 
with already crammed curriculums” (Lockwood & 
Mooney, 2017, p. 21).

Teacher competence and confidence 

Teacher competence and confidence emerges as 
one of the most significant factors in successfully 
teaching coding and computational thinking in the 
classroom.  Yet many teachers expected to teach the 
digital technologies curriculum in classrooms today 
would have received limited relevant training in their 
initial teacher education. 

While there is a shortfall in suitably 
trained digital technologies specialist 
teachers the task of delivering the new 
curriculum often falls to teachers, such 
as primary school teachers, who may 
have limited specialist knowledge in 
this area. 

The process of using computational thinking and 
coding to solve a problem in a maths or science 
lesson is quite different compared to using these in 
an English or art lesson. As a consequence non-
maths/physics subjects often use existing programs 
(apps) rather than making them, which provides 
limited opportunities for students to develop 
computational thinking skills. 

Summary

Since the 1970s and 1980s, new programming 

languages have been specifically developed to 
support primary and secondary school students to 
learn coding. Conversely, the increasingly pervasive 
use of computers in schools can result in the subject 
being ignored due to the mistaken belief that 
using a computing device is the same. Embedding 
coding and computational thinking into purposeful 
scenarios that students can identify with is essential. 
Effective teaching of the subject is primarily 
limited by the imagination and domain-expertise 
of the teacher and not by the capability or cost of 
technology. Teacher competence and confidence 
emerges as one of the most significant factors in 
successfully teaching coding and computational 
thinking in the classroom.  



13

The tertiary sector and the IT industry 

In this section, we investigate the link between 
schools, universities and the IT industry. We consider 
the impact of the dot-com boom and bust on 
university enrolment numbers and compare the 
open and high-paying jobs in the IT industry with 
other industries in Australia.

Dot-com boom (and bust)

The first wave of computing in the 1970s and 1980s 
resulted in what has been coined the dot-com 
boom. The early 1990s mark the beginning of 
the technology information age when a growing 
number of technology companies were founded 
and supplied with ample venture capital. It also 
marked the beginning of the industrialisation of 
company formation. Dot-com companies were 
highly valued on the stock exchanges, especially 
the NASDAQ. The dot-com boom follows the 
Gartner hype curve (Gartner) in which an innovation 
trigger leads to a peak of inflated expectations, a 
trough of disillusionment and a gradual slope of 
enlightenment until a plateau of productivity is 
reached. 

The dot-com boom led to a bust that started 
in March 2001. By the end of the stock market 
downturn in 2002, stocks had lost US$5 trillion 
in market capitalisation. The stock market losses 
were felt by many mum and dad investors that had 
invested in a market that looked too good to fail. 
Hence, the effects of the tech-bubble was felt by 
ordinary people. In combination with the high-profile 
reporting by the media about failing companies and 
job losses in the tech industry, many people formed a 
view that (i) there is no professional future for and (ii) 
no jobs in IT.

Peak of inflated 
expectations

E
xp

e
ct

at
io

n
s

Plateau of productivity

Slope of enlightenment

Trough of disillusionment

Innovation trigger

Time



14

University enrolment trends

Falkner (2017) at the University of Adelaide has 
researched the enrolment trends in Information 
Technology and Engineering courses at Australian 
universities. Her work is based on uCube data from 
the Australian Government Department of Education 
and Training. The analysis comprises the years 2002-
2015 and depicts a decline in higher education 
enrolments from 2002 to 2008, followed by a 
plateau until 2012 and a gradual increase since 2013. 
The data shows a two-year lag between the bust 
of the dot-com bubble in 2000 and the decline in 
higher education enrolments in IT in 2002. A possible 
explanation is that the Year 10 students of the year 
2000 had already made up their minds about their 
future tertiary fields of study. 

IT enrolments in Australia have not yet reached the 
levels of their peak in 2002. As of 2016, the field of 

information technology appears to be in the slope 
of enlightenment in relation to the Gartner hype 
curve. The plateau of productivity appears not to have 
been reached yet when comparing the IT higher 
education enrolment chart with the Gartner hype 
graph. 

The Australian Government Department of Education 
and Training annual report of the Undergraduate 
Applications and Offers listed 8,719 offers being 
made in 2017, which constituted an 8.1% increase on 
2016 levels. 



15

Jobs

In August 2014, the Australian job portal Seek listed 
12,659 open positions in ICT out of which 3,453 were 
remunerated over $150,000 per annum. 

As of 19 July 2018 Seek listed a total of 172,525 
open positions. 17,064 (9.9%) fell under the general 
category of ICT. Seek also lists high-paying jobs with 
an annual remuneration package of over $150,000. 
Here, ICT has 6,234 (36%) out of 17,318 open positions. 

Field of education
Offers Offer rates

2016 2017 % Change 2016 2017 Change

Natural and Physical Sciences 29,982 31,326 4.5% 97.5% 97.3% -0.3

Information Technology 8,062 8,719 08.1% 84.9% 83.8% -1.0

Engineering and Related 16,251 16,628 2.3% 86.2% 84.8% -1.4

Architecture and Building 6,932 7,278 5.0% 80.0% 75.7% -4.2

Agriculture, Environmental & 4,194 4,064 -3.1% 90.7% 89.7% -1.0

Health 64,451 65,153 1.1% 73.7% 72.4% -1.2

Medical Studies 2,130 2,226 4.5% 25.2% 23.9% -1.2

Dental Studies 867 785 -9.5% 41.3% 38.8% -2.5

Veterinary 1,142 1,051 -8.0% 56.1% 52.6% -3.5

Nursing 26,788 26,247 -2.0% 77.2% 73.2% -4.0

Health Other 33,524 34,844 3.9% 83.5% 85.5% 2.0

Education 23,718 24,113 1.7% 83.5% 82.9% -0.6

Teacher Education 22,215 22,382 0.8% 81.7% 80.7% -1.0

Education Other 1,503 1,731 15.2% 122.5% 127.7% 5.2

Management and Commerce 40,316 38,728 -3.9% 90.0% 88.7% -1.3

Society and Culture 66,958 66,470 -0.7% 87.0% 85.7% -1.3

Law 9,008 8,641 -4.1% 68.1% 66.3% -1.7

Creative Arts 23,634 22,499 -4.8% 79.0% 78.2% -0.9

Mixed field programs 1,338 1,234 -7.8% 112.2% 106.7% -5.5

Total 285,846 286,216 0.1% 83.7% 82.5% -1.2



16

The development of open ICT positions between 
2014 and 2018 follows an upward trend with an 
average annual increase of 8.3%. The number of 
high-paying ICT job adverts increased by 20.1% on 
average per annum. The ratio of high-paying to open 
positions increased from 26.9% (2014) to 36.5% 
(2018).



17

Summary

The bursting of the dot-com bubble has shaped 
a negative perception by market participants 
concerning the job prospects in the IT industry. 
This has led to a significant downturn in IT course 
enrolments at tertiary institutes, which has resulted in 
a shortage in IT specialists leading to a large number 
of open and high-paying positions. The IT industry is 
presently in a growth phase in relation to the Gartner 
hype curve (Gartner) and job prospects and therefore 
university enrolments will likely continue to increase 
in the short to mid-term. 

European Union policy analysis

On behalf of the European Commission Bocconi 
et al. (2016) conducted a comprehensive study 
analysing various European Union (EU) and non-
EU initiatives concerning computational thinking, 
coding and related concepts such as programming, 
algorithmic thinking in compulsory education. The 
purpose of the study was to show the implications for 
policy and practice. 

According to Bocconi et al. (2016) the most significant 
contributions to the relationship between



18

digital competence and computational thinking 
come from the following four policy documents: 

•• Running on Empty: The Failure to Teach K–12 
Computer Science in the Digital Age (Wilson, 
Sudol, Stephenson & Stehlik, 2010)

•• Shut down or restart? The way forward for 
computing in UK schools (The Royal Society, 
2012)

•• L'enseignement de l'informatique en France 
- Il est urgent de ne plus attendre (Académie 
des Sciences, 2013)

•• Informatics education: Europe cannot afford   
to miss the boat (Gander et al.,  2013)

Bocconi et al. (2016) criticises pedagogy and 
practice which focuses only on students having 
access to technology as opposed to learning about 
the ideas and science which underpin that.  The 
Australian Curriculum: Digital Technologies follows 
this approach by focusing on key concepts and 
not mandating use of any specific technology. The 
detailed exploration of these four papers is beyond 
the scope of this report, save for recommendations 
from the Royal Society paper (2012), which we 
discuss in Part 2.

Student assessment

Bocconi et al. (2016, p. 7) state that experts and 
practitioners are emphasising the importance of 
assessing students’ ICT skills. However, they argue 
that “only a limited amount of research has been 
carried out and currently there are only a few 
actual experiences of assessing students’ grasp of 
computational thinking concepts and of transferring 
of computational thinking skills to other knowledge 
domains.”

Implementation in national curricula 

The countries investigated by Bocconi et al. (2016) 
approach the teaching of computational thinking 
in different ways. Some countries integrate 
computational thinking across subject areas, 
particularly at the primary level. Others, especially at 
the secondary level, include computational thinking 
as a separate subject. Some countries, such as Wales 

and Austria include computational thinking and 
related concepts as part of the digital competence 
curriculum. Digital competence is a term used by 
the European Commission and Norwegian scholars 
to describe ICT general capabilities. 

Bocconi et al. (2016) remark that a lack of a common 
understanding of computational thinking inhibits its 
implementation in school curricula:

“An upsurge in the integration of computational 

thinking and, more broadly, of Computer Science 

in compulsory education is evident, as indicated 

by the recent wave of curricula reforms. Eleven 
countries in Europe (Denmark, France, Finland, 
Croatia, Italy, Malta, Poland, Turkey, UK-England, UK-
Scotland) have recently concluded a reform process 
that includes computational thinking and related 
concepts. Seven others (Czech Republic, Greece, 
Ireland, Netherlands, Norway, Sweden, Wales) are 
currently planning to introduce computational 
thinking into compulsory education. Moreover, 
seven other countries (Austria, Portugal, Cyprus, 
Israel, Lithuania, Hungary, Slovakia) are integrating 
computational thinking by building on their long-
standing tradition in computer science education, 
mainly in upper secondary schools. Some of these 
are expanding computer science education to 
include the lower secondary and primary levels. For 
those countries (namely: Spain, Germany, Belgium 
and Switzerland), where curricula development 
is managed at regional level, the integration of 
computational thinking in school varies from region 
to region.” (Bocconi et al., 2016, p. 9)

The study analysed how computational thinking 
is positioned in the curriculum along two axes: 
educational levels and subjects. Most countries 
integrate computational thinking in secondary 
school. However, there is now a growing trend 
towards primary school integration. 

Implementation framework

The study puts forward an integration framework 
comprising consolidated understanding, 



19

comprehensive integration, systemic rollout and 
support policy:

“In order for computational thinking to be integrated 
comprehensively across all levels of compulsory 
education, it is necessary to define a clear vision 

and set specific goals. As computational thinking 

involves far more than offering a few hours of 

coding, placing it in the curriculum calls for a robust 
strategy that takes into account the wide range of 
factors involved. A key consideration is the extent to 
which computational thinking is allocated across 
the full spectrum of subject area studies and, also, 
in multi-disciplinary and interdisciplinary contexts. 
Introducing computational thinking concepts to 

children early on in school is commonly held to 

be desirable. These considerations call for a holistic 
approach to computational thinking integration in 
compulsory education, which embraces essential 
aspects such as suitable assessment strategies and 
adequate teacher training” (Bocconi et al., 2016, p.7). 

ACARA, in line with the 
implementation framework proposed 
by Bocconi et al. (2016), has made 
the study of digital technologies 
compulsory for all students from 
Foundation through to year 8. Further 
study through to year 10 is optional. 

Bocconi et al. (2016) encourage close links between 
stakeholders including policymakers, grassroots 
initiatives, research centres, and teachers to allow 
them to learn from each other and history to avoid 
the repetition of mistakes and to promote good 
practice. Other stakeholder groups not directly 
involved in curricula development should also be 
adequately informed about what computational 
thinking is and how it is relevant to compulsory 
education. Bocconi et al. (2016) recommend a wide-
angle monitoring and analysis strategy to measure 
the impact and sustainability of implemented 
actions.



20

Integrate CT 
across all levels 
of compulsory 

education

Develop  Adopt a holistic 
a shared approach for 

understanding of introducing CT into 
CT & the relationship compulsory

with 21st century education

Foster broad 
engagement & 

optimise impact



21

International case studies 

In most countries the main rationale for introducing 
computational thinking and coding is to foster 21st-
century skills. These are seen as essential for active 
and fruitful participation in the knowledge economy 
and for employment in a digitally-oriented jobs 
market. The degree, however, varies. Where Austria, 
Denmark and Hungary take a logical thinking and 
problem-solving approach, Finland and Turkey take a 
more holistic approach that includes logical thinking, 
problem-solving, fostering key competencies (ICT 
skills) and coding, aimed at attracting more students 
into computer science and fostering employability in 
the ICT sector.

4.	 Teacher training

5.	 The development of teaching resources for 
non-computing subjects that use digital 
technologies.

A rigorous evaluation of the initiatives cannot 
yet be expected given their relative novelty. Even 
the Estonian ProgeTiger program (discussed 
below), which can be considered as a testbed and 
frontrunner, has not yet published a program 
analysis.

Fostering logical thinking skills

Fostering problem solving skills

Fostering other key competences

Attracting more students into Computer Science

Fostering coding and programming skills

Fostering employability in the ICT sector

In this section we present examples of countries 
that have decided to move forward with computing 
in the classroom. We use this general term 
intentionally since the terminology, foci and scope 
of the initiatives ranges vastly. The constituting 
elements of the national approaches are as follows:

1.	 Achieving student proficiency in the use of 
a range of technologies (laptops, 3D printers, 
software)

2.	 Coding

3.	 Computational thinking and algorithmic 
thinking

Estonia

In primary education Estonia has a national 
cross-curricular theme called ‘Technology and 
Innovation’ which requires all teachers to implement 
technology in their teaching. That means that 
teachers have to integrate technology into different 
subjects, for example using Scratch in mathematics 
or music programs in music lessons. The curriculum 
does not specify how to, or exactly what technology 
teachers must use, leaving them with a level of 
personal discretion. 



22

In 2012, when the idea of teaching programming 
and robotics was introduced to Estonian schools, 
Estonia launched the ProgeTiger program. The 

goal of ProgeTiger is to enhance learners’ 

technological literacy and digital competence. 

From an Australian curriculum perspective it 
involves a mix of ICT general capabilities, design 
and technologies, and digital technologies and 
their integration into the teaching and learning 
of different subjects and extracurricular activities. 
The program financially supports kindergartens 
and schools in acquiring different programmable 
devices. ProgeTiger is supported and funded by 
the Estonian government through the Ministry of 
Education and Research.

In March 2018 the Estonian Information Technology 
Foundation for Education reported on the scale of 
ProgeTiger in Information Technology Foundation 
for Education (2018): “Over the past five years, 
equipment in the amount of more than 830,000 
euros has been purchased to 446 schools and 
kindergartens for teaching robotics, programming, 
3D modelling as well as multimedia. Attention 
has also been paid to increasing the teachers’ 
technological literacy. More than 4,100 teachers 
have participated in trainings of ProgeTiger.” The 
ProgeTiger program yet to publish an evaluation. 

Finland

Finland introduced a national computer science 
school curriculum in the 2016-17 school year. The 
curriculum does not use the word ‘code’, but 
instead discusses computational thinking (Finnish: 
algoritminen ajattelu) and programming (Learning 
Environments research group, 2015). The focus is less 
about programming and more about computational 
thinking. The underlying motivation has been 
expressed by Guzdial (2017): “We want students to 
understand what a computer can do, what a human 
can do, and why that’s different. To understand 
computing is to have a robust mental model of 
a notional machine”. According to Deruy (2017), 
“Samuel Abrams, a professor at Columbia University 
[...] compared Finland’s high marks on international 
education tests to those produced by other, similarly 

sized Nordic countries that are also relatively more 
homogenous and egalitarian than the United States. 
Those countries—Sweden, Denmark, and Norway—
score lower than Finland and more in line with 
America” where the focus is on coding. 

Because of its status as an early adopter and its focus 
on computational thinking, the results from Finland 
both in terms of its Programme for International 
Student Assessment (PISA) and other reports should 
be closely watched. 

United Kingdom

The inspiration for the digital technologies curricula 
in the United States of America, Australia and New 
Zealand is the UK national computing program (UK 
Government, 2013). The program focuses on coding 
and computational thinking but has removed ICT 
general capabilities and digital literacy:

“It explores the deep links with mathematics, 
science and design and technology, and provides 
insights into both natural and artificial systems. The 
core of computing is computer science, in which 
pupils are taught the principles of information and 
computation, how digital systems work and how to 
put this knowledge to use through programming. 
Building on this knowledge and understanding, 
pupils are equipped to use information technology 
to create programs, systems and a range of 
content. Computing also ensures that pupils 
become digitally literate – able to use, and express 
themselves and develop their ideas through, 
information and communication technology – at a 
level suitable for the future workplace and as active 
participants in a digital world” (UK Government, 
2013).

The program has a strong focus on computer 
science, which appears to have drawn inspiration 
from an influential paper published by the Royal 
Society (2012). The paper laments the vicious cycle of:

1.	 Shortage of teachers with sufficient subject 
knowledge

2.	 ICT lessons delivered by non-specialists



23

3.	 ICT curriculum delivered as digital literacy

4.	 ICT perceived as being low level skills

5.	 Decisions are made based on negative 
impressions

6.	 Few people study degrees which result in 
rigorous Computer Science qualifications, 
which again leads to a shortage of teachers 
with sufficient subject knowledge

The Royal Society (2012, pp. 8-11) makes 11 
recommendations, most notably:

A.	 Clarity of terminology: the term ICT as a 
brand should be reviewed and the possibility 
considered of disaggregating this into clearly 
defined concepts.

B.	 Teacher recruitment: the government should 
set targets for the number of computer science 
and information technology specialist teachers, 
and monitor recruitment against these targets 
in order to allow all schools to deliver a rigorous 
curriculum.

C.	 Industry support: government departments 
with responsibility for education in the UK 
should seek industry support to extend existing 
funding in this area

D.	 �Resources: suitable technical resources should 
be available in all schools to support the 
teaching of computer science and information 
technology.

E.	 Education of teachers: in order to redress the 
imbalance between academic and vocational 
qualifications in this area – and to ensure that 
all qualifications are of value to those who 
take them – the departments for education 
across the UK should encourage awarding 
organisations to review their current provision 
and develop Key Stage 4 qualifications in 
computer science in consultation with the UK 
Forum, universities and employers.

F.	 Professional standards: The UK Forum should 

advise awarding organisations on appropriate 
assessment methods for qualifications in 
digital literacy, information technology and 
computer science.

G.	 Teacher professional development: the UK 
Forum should put in place a framework to 
support non-formal learning in computer 
science and to support teachers. 

In Australia the focus so far has been 
on the development of a National 
Digital Technologies Curriculum, led 
by ACARA, the curation of resources 
(Digital Technologies Hub, led by 
Education Services Australia), some 
development of local resources by 
various players and the development 
of training courses to upskill in-service 
teachers. There are some industry-
supported programs, mainly developed 
by industry itself. However it appears 
that government has not yet set targets 
for the number of computer science 
and information technology specialist 
teachers and Australian universities do 
not yet graduate computer science 
specialist teachers in large scale to 
meet the demands of the schools.  

The UK national computing program has been 
criticised for being too abstract and trying to 
produce mainly programmers (Everett, 2018) whilst 
neglecting soft skills and lacking a recognition that 
most students will not ever work as programmers. 
This is not necessarily a fair criticism. Most students 
will not work as mathematicians or scientists or 
linguists, yet mathematics, science, and languages 
are compulsory at school. The purpose of school 
curricula is the development of cognitive skills and 
not only the production of work-ready graduates.



24

South Korea

The South Korea Software Education program is 
focused on developing computational thinking, 
coding skills and creative expression through 
software and is due to be rolled out at all levels of 
education. Primary and lower secondary face the 
most dramatic change because the new program 
is mandatory at these levels as of 2018. Training for 
primary teachers is especially critical to the success 
of this policy since they teach all subjects and there 
are no separate IT/computer teachers. By 2018 
60,000 primary school teachers (30% of the total) will 
receive specialized training in software education 
and 6,000 of that trainee population will receive 
in-depth training. In addition 1,800 middle school 
teachers who are certified to teach IT/computing will 
receive additional training on software education.

Summary

Many Organisation for Economic Co-operation and 
Development (OECD) countries have decided to 
move ahead with the implementation of digital 
technologies at primary and/or secondary level. The 
underlying intents vary and so do the approaches. 
The Australian Curriculum: Digital Technologies 
has been inspired by the UK national computing 
program which commenced in 2013. Many of the 
recommendations from the Royal Society (2012) are 
applicable to Australia and go beyond what has been 
implemented in Australia to-date, in particular with 
regards to the above-listed recommendations B, C, 
E, F, and G. It will be interesting to study the results 
from the different approaches chosen by the UK, 
Estonia and Finland: 

•	 UK: coding 

•	 Finland: computational thinking 

•	 Estonia: a combination of ICT general 
capabilities, design and technologies, and 
digital technologies

In terms of the teacher professional development we 
note the interesting large-scale approaches of the UK 

Computing at School (CAS) program and the related 
efforts in South Korea.



25

Part 3: Implications for teaching and learning

Implications for teaching and teacher 
professional development

Teacher training and professional development 
are crucial to the success of any new curriculum 
including digital technologies. Digital technologies is 
very different from most other Science, Technology, 
Engineering and Mathematics (STEM) subjects 
due to the relative newness of its knowledge base. 
Most science and mathematics content taught 
at school is over 50 years old, and much of it is 
several centuries old. Modern calculus, probably 
the most advanced form of mathematics taught at 
Australian high schools, dates back to the late 17th 
century.  Curriculum changes in these subjects have 
a significant lag time and teachers in these fields 
acquire most of the content knowledge required for 
a successful forty-year teaching career at university. 

In contrast, digital technologies is an emerging 
field. Modern computing has its origins in the 1930s, 
and the concept of general-purpose information 
processing machines and their application is still in 
development. 

Most teachers remain unaware that 
the fundamental computing concepts 
used today have changed little since 
the 1930s. The focus on these original 
concepts, rather than on the application 
of changeable technologies, tools or 
operating systems is a significant credit 
to the Australian Curriculum: Digital 
Technologies. It is therefore beneficial 
for teachers to have a firm grasp of 
computational thinking concepts. 

The professional development needs of digital 
technologies teachers are very different from the 
requirements of mathematics teachers, especially as 

many digital technologies teachers are self-taught. 
So while the former require significant professional 
development in terms of core concepts, the latter 
require hardly any.  However, comparable best 
practice ways of delivering content can change and 
are reviewed regularly.

According to Bocconi et al. (2016, p. 7), “there is 
broad consensus among experts and practitioners 
that the introduction of computational thinking 
in school curricula at all levels is creating demand 
for large-scale in-service continuous professional 
development. Training activities are often designed 
specifically to be hands-on so that teachers can more 
easily transfer their new skills to their classrooms. 
Grassroots efforts are also contributing to teachers’ 
professional development.” This observation is 
confirmed by the Australian Computing Academy’s 
own anecdotal evidence from the field. 

In this section, we provide an overview of teacher 
coding and computational thinking training 
activities in Australia, the US and the UK, with a 
particular focus on England. The US was chosen 
due to the drive of their private-sector in supporting 
the professional development of teachers.  We 
selected the UK because of the vanguard nature 
of the UK curriculum and the strong government 
involvement. Between the US and the UK, Australia 
appears to be taking a position closer to that of 
the UK with creation of a national curriculum, 
publicly-funded projects, and some private sector 
investment. 

According to Bocconi et al., (2016, p. 13), the “[...] 
teacher training opportunities discussed in the 
literature largely focus on pedagogical aspects rather 
than technological skills. Most training seems to be 
designed for all subject teachers, sometimes with 
a particular focus on STEM teachers. Pedagogical 
approaches addressed include storytelling, problem 
solving, deductive and inductive pedagogies with a 



26

focus on computational models and simulation.” 

All the experts interviewed by Bocconi et al. (2016) 
discuss or at least mention teacher training. They 
propose:

1. A multi-perspective approach in preparing 
teachers, 

A. Specialisation of teachers for upper 
secondary level; 

B. An array of competencies of teachers at 
primary school level. 

3. Professionalisation of teachers who are asked 
to impart coding and computational thinking 
lessons. 

4. Making room in teacher education programs 
for computer science specialists who can 

2. teach at least basic notions of computational 
thinking, related to STEM subjects.

Professional development of teachers in 
computational thinking in Australia

In Australia, the introduction of the Australian 
Curriculum: Digital Technologies has led to a surge 
in demand for in-service teacher training in this area.

Only a relatively small number of digital technologies 
teachers in Australia have a formal university-
level background in digital technologies, or, 
more generally, computer science as it is called 
at university. According to estimates, Australian 
universities graduate in the order of 100 digital 
technologies specialist teachers annually. This means 
that a vast majority of Australian digital technologies 
teachers are teaching out of field, though some of 
them have undergone some teacher professional 
development. A typical two-day teacher professional 
development course consists of twelve hours of 
content. Whilst better than nothing, it is small 
compared to a cumulative total of months (of years) 
of in-depth training at university. Training efforts in 
Australia, therefore, focus on five aspects that we 
elaborate in the following section:

1.	 Unpacking the Australian Curriculum: Digital 
Technologies

2.	 Resources

3.	 Train the trainer

4.	 Online courses

5.	 Supporting disadvantaged schools

Unpacking the Australian Curriculum: Digital 

Technologies

The Australian Curriculum: Digital Technologies was 
endorsed in September 2015, but it is an entirely 
new field of study for many schools and teachers. 
To counter this problem, a number of organisations 
have developed training resources or run training 
sessions to assist teachers with unpacking the new 
curriculum. 

Lockwood and Mooney (2017) summarise their 
findings about ways in which “[...] teacher’s 
enthusiasm for, knowledge of and ability to teach 
computational thinking and computer science 
in their classrooms can be improved/increased. 
Most popular seem to be day-long workshops 
and workshops that are heavily practical in nature. 
The ideas, tools and lessons that are given during 
these workshops seem to give teachers a greater 
understanding of what computational thinking is 
and how it can be useful for their students whilst 
also giving them very practical ways to implement 
this in a variety of contexts. [...] Interestingly it seems 
that one significant barrier to computer science and 
computational thinking in education is teachers 
and educator’s misconceptions about what these 
are. One advantage of having teachers attend 
these training days and workshops is that these 
misconceptions and misunderstandings can be 
corrected, which is successfully done in most of the 
described studies. It can also be seen from these 
papers that teacher’s willingness and interest in 
teaching computer science/computational thinking 
is vital in its implementation in both primary, 
secondary and tertiary education.” 



27

Some of the typical misconceptions that the authors 
have encountered in the field are that digital 
technologies is only about coding, photo editing, 
stop-motion animations or about using ‘educational’ 
apps, usually in a form of edutainment.

The Australian Computing Academy (ACA) delivers 
federally-funded professional learning workshops 
to show teachers how to interpret the Australian 
Curriculum: Digital Technologies. The Australian 
Computing Academy also sponsors training delivered 
by the state Computer Education Groups (CEGs), 
several of which run workshops unpacking the 
curriculum.

The workshops contain both coding and 
computational thinking activities. This includes 
computational thinking concepts such as 
representation and abstraction that are derived 
from human communication and then applied and 
developed further in the context of computing. The 
estimated balance between computational thinking 
and coding contents is approximately 60:40. The ACA 
found that deriving digital technologies concepts 
from everyday life makes it easier for teachers to 
make connections with their students, and apply 
their prior knowledge to teaching the subject. 
Examples include a human sandwich making robot 
(played by the teacher) that is programmed by the 
students in a clear and unambiguous way to make a 
sandwich.

Resources

Teachers are in need of high-quality resources 
to support the implementation of the Australian 
Curriculum: Digital Technologies. While the internet 
provides easy access to an array of resources it can be 
difficult for teachers to find those most relevant to, 
and linked with the curriculum.

To address this in part, the Digital Technologies 
Hub was created under the Australian Government 
Department of Education funding to support the 
Australian Curriculum: Digital Technologies. It is 
a repository of resources drawn from across the 
internet. Each resource is tagged to relevant areas of 

the Australian Curriculum: Digital Technologies.

The Computer Science Education Research 
group (CSER) based at the University of Adelaide 
maintains a lending library of digital technologies 
resources. Teachers can borrow a selection of digital 
technologies educational equipment that are 
accompanied by lesson plans, based on the CSER 
Massive Open Online Courses (MOOCs) (see below), 
designed for different age groups and mapped 
to relevant content descriptors in the Australian 
Curriculum. 

The ACA develops online digital technologies 
challenges for coding and computational thinking 
(Australian Computing Academy Website, 2018). 
The focus of the digital technologies challenges 
is computational thinking, with coding being the 
vehicle to deliver computational thinking concepts 
and to keep the activities engaging and practical.

Train the trainer

An alternative approach to training the teachers 
directly is to train a group of lead teachers who 
then train other teachers. In 2018, the Western 
Australian Department of Education established 
Teachers Can Code (TCC) in partnership with the 
ACA to develop, design and deliver a lead teacher 
training program, consisting of multimodal, face-to-
face and online professional learning and resources 
covering curriculum insights, as well as training in 
computational thinking and coding. 

The objectives of the TCC program are to build 
the capacity of up to 100 lead teachers, in either 
Years 3-6 or Years 7-10. The program aims to build 
capacity in the lead teachers to deliver TCC modules 
to schools and networks and build expertise in the 
most technically challenging parts of the digital 
technologies curriculum, especially coding.

The TCC program develops eight primary and 
secondary professional learning modules, aimed at 
supporting teachers to improve their own coding 
skills (Department of Education: Western Australian 
Curriculum Support, 2018).



28

TCC has established a reporting regime in which 
teachers are regularly asked about their confidence, 
capability, engagement and other aspects of their 
teaching. This data informs the development of the 
project resources and delivery methods.

Train the trainer models have also been 
implemented by some of the state CEGs. A particular 
case is the ICT Educators NSW (ICTENSW) Regional 
Champions Scholarship program that funded 
regional teachers to travel to Sydney for training 
in content and extension training in how to run 
workshops, ICTENSW also runs regional workshops.

Online courses

CSER has developed online courses designed to 
support Australian teachers with implementing the 
Australian Curriculum: Digital Technologies. These 
are free online courses that provide teachers with 
background knowledge about concepts and topics 
in the curriculum, as well as practical examples that 
can be tried in the classroom. CSER brings together 
a collection of existing, and purpose-built resources. 
At present, CSER offers four MOOCs: F-6 Foundations, 
F-6 Extended, 7-8 Next Steps and 9-10: Explore 
(University of Adelaide, MOOCs). The MOOCs cover 
both coding and computational thinking. 

Supporting disadvantaged schools

The Digital Technologies in Focus project operates at 
the intersection of teacher professional development 
and equity. The project is a part of the Australian 
Government’s National Innovation and Science 
Agenda. ACARA has been funded to support the 
implementation of the Australian Curriculum: 
Digital Technologies in some of Australia’s most 
disadvantaged schools across all states and 
territories. One hundred and sixty schools with a low 
Index of Community Socio-Educational Advantage 
(ICSEA) participate in the project. From July 2017 
leaders and teachers from these schools take part 
in workshops to support the implementation of 
digital technologies subjects within their schools. 
Nine digital technologies specialists (also known 
as curriculum officers) support clusters of schools, 

providing digital technologies expertise to primary 
and secondary school teachers. The project develops 
tailored plans for each school and stakeholder 
networks comprising schools, industry, universities, 
teacher associations and others. 

Professional development of teachers in 
coding and computational thinking in 
the US

The US has a highly decentralised K-12 education 
system. Public schools belong to school districts, 
which are governed by school boards. Each district is 
set up as a legally separate body corporate.

Hence, the US K-12 education system’s 
fragmentation is considerably higher relative 
to Australia where ACARA is tasked with the 
development of national curricula that are 
subsequently implemented (sometimes with 
adaptations) by all schools. In contrast, there is no 
national US curriculum and the state governments 
only set standards and mandate standardised tests.

Teacher professional development for ICT and 
Digital Technologies is driven mainly by the US 
National Science Foundation (NSF) and the private 
sector. 

The NSF-financed CSK10 program (2010-2016) 
trained 10,000 upper secondary computer science 
teachers. Private-sector grassroots efforts are also 
contributing to teachers’ professional development. 
For example, Code.org trained about 30,000 
teachers in US compulsory education over the last 
three years, organizing professional workshops 
and holding conferences for teachers and teacher 
trainers.

Professional development of teachers in 
coding and computational thinking in 
England

According to Jeannette Wing (Loble, Creenaune, 
& Hayes, 2017, p. 131), the US takes its lead from the 
UK: “The UK, through their Computing at School 
initiative, has introduced computing at all levels. It 
is a very courageous effort. The UK is my exemplar. 



29

I hope countries around the globe look to the UK 
as a leader and learn from them as they push the 
frontiers of education in computer science.”

According to Bocconi et al. (2016), in England, 
there are approximately 24,000 schools, including 
16,800 primary schools, 3,400 secondary schools 
and 2,400 independent schools (primary and 
secondary). There are more than 500,000 teachers 
in compulsory education. In secondary schools the 
new ‘computing’ subject is assigned to the 14,000 
existing ICT teachers who have to be up-skilled. In 
primary school there are around 200,000 teachers 
who currently teach all subjects, a load which will 
now also include computing.

The teacher training task in England is being 
addressed by CAS, a grassroots initiative with 
financial support from the Department for 
Education. CAS has established the Network of 
Teaching Excellence (NoE) in Computer Science 
for supporting, training, and equipping teachers as 
they implement the computing programs of study 
in their classroom. The NoE’s plan is to recruit 600 
master teachers each supporting forty local schools 
by designing and running not-for-profit continuing 
professional development (CPD) activities for those 
schools.

“The NoE has selected and trained Master Teachers, 
i.e. experienced classroom teachers with a passion 
for the subject; enthusiasm, energy, and a desire to 
support others. Master Teachers, with the support 
of their Head Teacher, are expected to dedicate one 
afternoon a week to train other teachers in their area. 
We develop some learning material centrally (such 
as QuickStart Computing), but is up to the master 
teacher how to run the training. Now, we have 350 
Master Teachers active in the NoE. Starting from 
September 2015 we have introduced 10 Regional 
Centres based in Universities, involving either the 
Computer Science department or the School of 
Education and in some cases both, working with 
the CAS Master Teachers in their area to promote 
and support relevant teacher engagement and CPD 
activities” (Bocconi et al., 2016, p. 43). NoE’s master 

teacher model resembles the Western Australian 
Government’s approach for TCC (see above).

“While several MOOCs have been developed, a 
face-to-face component of teacher training is still 
relevant. A recent survey of over 900 in-service 
teachers in England concluded that face-to-
face events and training, paired with an online 
community, are considered to be particularly 
effective in addressing their needs in content 
knowledge and pedagogical content knowledge 
related to computational thinking” (Bocconi et al., 
2016, p. 42).

Lessons for Australia

Teacher professional development for 
in-service teachers in Australia would 
benefit from embracing a focused, 
accredited and large-scale initiative 
similar to the UK’s CAS program with 
specific focus on teaching excellence in 
coding and computational thinking.

This could be enhanced by a public-private 
partnership between federal and state governments 
and the private sector. Currently this relationship is 
weak relative to the US. WA’s TCC train the trainer 
initiative is also shaping up as a potential blueprint 
that warrants closer inspection by the other states 
and territories.

In parallel, Australian universities could support 
the training of more specialist digital technologies 
teachers, in part by treating coding and 
computational thinking as a core subject area, just 
like literacy and numeracy. This approach would 
ensure that graduate teachers are well versed in 
coding and computational thinking and can make 
links to other subject areas. It is likely this approach 
would reduce the need for teacher professional 
development intervention for in-service teachers. 



30

Implications for student learning 
outcomes

Pedagogy

The development of pedagogy in computer science 
education lags behind that of other subjects. In 
contrast to computer science, mathematics has 
been taught at schools for centuries and there is 
broad consensus about teaching key concepts 
at different year levels, taking into account the 
changing cognitive capabilities as students age. 
With respect to computing and computational 
thinking, this consensus has not yet been developed. 
As a result, it is possible to either underwhelm 
or overwhelm students with content that they 
are either too old or too young for, leading to 
disenchantment with the subject. Jeannette Wing 
states that she strongly believes that it is important 
to do more research in this area (Loble, Creenaune & 
Hayes, 2017).

The experts who were interviewed by Bocconi et 
al. (2016, p. 36) “agreed that multiple pathways to 
computational thinking should be used throughout 
compulsory education. In particular, Mitchel Resnick 
and Joke Voogt pointed out the benefits of providing 
students with the opportunity to design, create and 
experiment in real-life situations, and other areas they 
care about. A number of interviewees questioned 
the current uptake of coding. Judith Gal-Ezer, for 
instance, points to the fact that over-reliance on 
coding might give pupils a false impression of what 
computational thinking is. Simon Peyton Jones 
discussed the need to undertake research to evaluate 
the effectiveness of different approaches.”

If a student were to always code as directed and 
were never allowed to experiment with algorithmic 
development, and thus a range of computational 
thinking skills, then this would be similar to 
someone only pushing the buttons of a machine 
in a repetitive fashion without providing any 
direction as to the function of the machine or to the 
design of its output. Instead, the objective of digital 
technologies teaching is to develop higher-order 

thinking skills and not to produce a droid army of 
programmers.  

To appreciate the importance of this point one has 
to consider the creativity and skill-sets necessary 
for turning an abstract idea into a tangible, useful 
product. Steve Jobs is attributed the quote “real 
artists ship!” in which he refers both to the artistry and 
creativity of the software engineering process as well 
as to an outcome that does something. 

The role of computers and laptops

Computers play an increasing role in the classroom. 
In addition to their historic role as instruments 
to do coding, they have assumed a broader role 
as a vehicle for student administration and as a 
delivery channel for learning content that is not 
related to computer science education. This leads 
Jeannette Wing to ask the question: “[...] how best 
and when should we use ‘the computer’ in the 
classroom to teach and reinforce computational 
thinking concepts? Here my concern is throwing 

technology into the classroom and thinking 

the students are going to learn anything, let 
alone computing. We need further research on 
how computing technology can be used effectively 
for learning and not hinder the learning process. 
We also need research on how such technology 
can help reinforce the learning of computational 
thinking specifically” (Loble, Creenaune & Hayes, 
2017, p. 131). 

The OECD released the results of a landmark study in 
2015 about students, computers and learning
(OECD, 2015). The authors conclude that “where 

computers are used in the classroom, their impact 

on student performance is mixed at best. Students 
who use computers moderately at school tend to 
have somewhat better learning outcomes than 
students who use computers rarely. But students 

who use computers very frequently at school 

do a lot worse in most learning outcomes, even 
after accounting for social background and student 
demographics” (OECD, 2015, p. 15).



31

“The countries with the greatest integration of ICT 
in schools are Australia, Denmark, the Netherlands 
and Norway. Rapid increases in the share of students 
doing school work on computers can often be 
related to large-scale laptop-acquisition programs, 
such as those observed in Australia, Chile, Greece, 
New Zealand, Sweden and Uruguay” (OECD, 2015, 
p. 50). Despite the rapid increase of computers 
in Australian classrooms between 2003 and 
2012, student mathematics performance in PISA 
decreased during the same period (OECD, 2015).



32

Correlation does not constitute causation, and 
isolating factors that contribute to an effect is difficult 
in education where curricula, syllabi, teacher training 
and confidence, pedagogy and cultural norms 
intersect. If anything is definite, it is that the effects 
- both positive and negative - of computers and 
their usage for education inside and outside of the 
classrooms require further investigation. 

It is generally believed that more technology in the 
classroom is beneficial to the learning outcomes 

of students and that schools and students from 
areas with a high socio-educational advantage 
(ICSEA) value would perform better academically 
because of the high-ICSEA students’ higher access to 
technologies. Based on the OECD report (2015), high-
ICSEA students that have high access to computers 
might be at a disadvantage relative to  lower-ICSEA 
students with less computer access. 



33

Australia’s mean index of ICT use at school is 0.6 
points higher than the OECD average. Australia 
therefore finds itself on the high side of computer 
use in the classroom in relation to most other OECD 
countries. 

“Overall, the most frequent pattern that emerges in 
PISA data when computer use is related to students’ 
skills is a weak or sometimes negative association 
between investment in ICT use and performance. 
While the correlational nature of this finding makes 
it difficult to draw guidance for policy from it, the 
finding is remarkably similar to the emerging 
consensus in the research literature, based on studies 
that use more rigorously designed evaluations. [...] 
Overall, the evidence from PISA, as well as from 
more rigorously designed evaluations, suggests that 
solely increasing access to computers for students, at 
home or at school, is unlikely to result in significant 
improvements in education outcomes”(OECD, 2015, 
p. 164).



34



35

Measuring computational thinking 

Lockwood & Mooney (2017) investigated the methods 
and tools that exist to test students’ computational 
thinking abilities and improvement. In their paper, 
they list several tools, quizzes, and concepts and 
discuss the issue of assessing computational thinking 
without a dependency on coding. Lockwood and 
Mooney come to the conclusion that “overall work 
in testing for computational thinking is in its infancy. 
Most of the examples…are in the early stages of 
development. Tools do exist such as Dr. Scratch 
and the tools developed by the Scalable Design 
Group but there is a need for more research into 
this area. Other forms of test are based on problem-
solving and analytical thinking tests. Whilst these 
are potentially beneficial, if computational thinking 
is to become a common skill taught in schools 
and universities then built-for-purpose tools and 
assessments might be required” (Lockwood & 
Mooney, 2017, p. 15).

Case Study: Measuring computational 
thinking skills

The National Foundation for Education Research 
(NFER) in the UK has published the results (Straw, 
Bamford, & Styles, 2017) of a randomized controlled 
trial and process evaluation of Code Clubs – a UK 
network of after-school clubs where children aged 
9-11 learn to program by making games, animations, 
websites, and applications. Code Club UK produces 
material and projects that support the teaching of 
Scratch, HTML/CSS, and Python. The clubs, which 
are extracurricular in their nature, are supported by 
volunteers, and usually run for one hour a week after 
school during term time.

The evaluation assessed the impact of Code 
Clubs on Year 5 students’ computational thinking, 
programming skills, and attitudes toward computers 
and coding. Twenty-one schools in the UK took part 
in the trial which used a student-randomized design 
to compare student outcomes in the intervention 
and control groups. Intervention group students 
attended Code Club during the 2015/16 academic 
year, while control group students continued as they 
would do normally. The primary outcome measure 

was the Bebras Computational Thinking Challenge, 
which has been running in the UK since 2013. Bebras 
UK is a 40 min online quiz of 15 questions, grouped 
in 3 categories (easy/medium/hard).

The results of the evaluation showed that attending 
Code Club for a year did not impact students’ 
computational thinking any more than might have 
occurred anyway, but did significantly improve their 
coding skills in Scratch, HTML/CSS, and Python. This 
was true even when control children learned Scratch 
as part of the computing curriculum in school.

Code Club students reported increased usage of all 
three programming languages – and of computers 
generally. However, the evaluation data suggests that 
attending Code Club for a year does not affect how 
students view their abilities in a range of transferable 
skills, such as following instructions, problem-solving, 
learning about new things and working with others.

Reflection on Methodology

This study leads to two important questions:

Is Bebras the right metric to measure computational 
thinking?

Is coding at UK Code Clubs taught in a way 
that is mechanical, non-creative and therefore 
removed from core concepts that can be found in 
computational thinking?

Bebras started in 2003 in Lithuania and was founded 
by Prof. Valentina Dagienne from the University 
of Vilnius. Nowadays, representatives from over 35 
participating countries annually produce a set of 
non-coding computational thinking questions that 
undergo a quality management process and a one 
week workshop before they are implemented for 
deployment mostly through Bebras online servers. 
Whilst every effort is made to map the question 
to computational thinking concepts, there is not a 
single canonical framework at the foundation of the 
question development. The earlier mentioned lack 
of an agreed definition of computational thinking 
is an issue. Every country is at liberty to choose from 
the annual question catalogue for their national 
Bebras week (or fortnight). Since question sets 



36

vary annually and between countries and national 
Bebras organisers are free to (1) choose how many 
points are allocated per question (2) set the age 
groups (3) set the duration and time allocations for 
a national Bebras contest. It is therefore extremely 
difficult to draw conclusions as to the (1) relevance 
of computational thinking concepts, (2) country 
by country comparisons and (3) long-term trends. 
From this perspective, we argue that whilst Bebras is 
a useful tool in the classroom, it should, at this point 
in time, not be considered as a metric against which 
other computational thinking activities or resources 
be measured and therefore no policy decisions 
should be taken that are based on a Bebras metric 
alone.

In Australia, ACARA has published the National 
Assessment Program – ICT (NAP-ICT) Literacy report 
on the ICT proficiency of Australian year 6 and 10 
students in 2005, 2008, 2011, 2014 and most recently 
in late 2018. 

The 2014 report identified a decline in the mean 
scale scores for years 6 and 10 from 2011 to 2014. The 
Year 6 cohort’s mean score has dropped below 2008 
levels and the Year 10 cohort’s mean score is below 
2005 levels.  

The NAP-ICT of 2014 did not measure coding and 
computational thinking skills. Its focus is on “The 
ability of individuals to use ICT appropriately to 
access, manage and evaluate information, develop 
new understandings, and communicate with others 
in order to participate effectively in society” (ACARA, 
2015). In contrast to OECD (2015), NAP-ICT (2014) 
did not investigate the impact of ICT on students’ 
literacy and numeracy skills. 



37

Interpretation

A firm understanding of the correlation of the 
increasing computer use and a decline in academic 
outcomes has not yet been scientifically established. 
We can presently only put forward potential factors 
that require further investigation:

1.	 Distraction: Students use their computers not 
only for focused academic work, but instead for 
other things, such as browsing the web, playing 
games, or social media. 

2.	 Task suitability: computers may not always 
be the best instrument for a task. Using a 
computer can consume significant cognitive 
effort on the side of the student, which would 
otherwise have been available to solve the task. 
Example: Writing a formula in a formula editor 
is much harder and slower than writing it by 
hand on paper. Here, the student could be 
focussing on mastering the tool, rather than 
thinking about the mathematics.

3.	 Unavailability: computers are not always 
functioning reliably. In a class of 20-30 
students, some computers are bound to 
malfunction, experience network issues, block 
content, prevent login, etc. In our experience, 
a teacher can lose 5-10 minutes from each 
period just because of computer issues. 
Assuming 5 lost minutes per lesson x 4 lessons/
day x 200 school days = 4,000 minutes or 67 
hours of lost time per school year.

4.	 Varied, but incorrect information: whilst 
traditional textbooks are extensively reviewed, 
computer-use encourages the use of a wide 
range of resources from the internet that have 
not been rigorously reviewed. 

5.	 Superficiality: reading online is different 
from reading a book. Online reading is more 
about skimming information. As a result, the 
learning may be less permanent (Alexander & 
Trakhman, 2017).

6.	 Inability to connect: Continual access to the 
internet may lead teachers and students to 
believe knowing where to find information 
is more important than, or the same as, 
knowing essential facts. The latter is necessary 
of students are to make connections, draw 
conclusions, and therefore develop new 
insights.

7.	 Rise of mobile technology: the authors of the 
NAP-ICT report (ACARA, 2015) suggest the 
testing regime, which focusses on laptop use, 
has been superceded by tablets that have a 
drag and swipe touch user interface. 

8.	 ACARA (2015, p. 114) further suggest other 
potential influences: 

A.	 Changes in teaching and learning with 
ICT have resulted in less emphasis being 
placed on the teaching of skills associated 
with ICT literacy.

B.	 “Development of ICT literacy competencies 
has been taken for granted in Australia 
where the level of access to ICT in 
schooling is extremely high.”

C.	 “The emergence of mobile computing 
technology devices has led to increased 
emphases in teaching and learning on 
different skills (such as those associated 
with online communication).”



38

Case Study: Teaching coding and 
computational thinking without the need 
for computer hardware 

Computer Science Unplugged (CS Unplugged) is 
a collection of resources that teaches Computer 
Science without the need for computing hardware. 
The content instead favours games and puzzles that 
use cards, string, crayons and lots of running around. 
CS Unplugged, therefore, constitutes a low barrier 
of entry resource that can be used by all schools 
independent of their budget. 

Bell and Vahrenhold conducted an analysis of the 
effectiveness of CS Unplugged in their paper CS 
Unplugged—How Is It Used, and Does It Work? 
(Böckenhauer,  Komm, & Unger, 2018). They found 
that “surprisingly few empirical studies about the use 
of CS Unplugged activities in a regular classroom 
setting have been conducted” (Böckenhauer, Komm, 
& Unger, 2018, p. 504). As part of the review of the 
studies, it was identified that:

•	 CS Unplugged activities changed middle-
school students’ view of computer science 
toward mathematical thinking. However, 
these students still considered computers 
essential to computer science and, were 
found to become less attracted to the field. CS 
Unplugged activities are only loosely related to 
“central concepts” in computer science and not 
explicitly linked to students’ prior knowledge. 
This “is a direct consequence of the activities 
having been developed for very young children 
who—by definition—cannot be expected to have 
much prior knowledge in computer science 
or mathematics to build upon” (Böckenhauer,  
Komm & Unger, 2018, p. 504).“The union of the 
derived learning objectives did not fully cover 
all dimensions of Bloom’s revised taxonomy. 
However, [...] CS Unplugged activities indeed 
address objectives well suited for outreach and 
for introducing new topics in class, thus showing 
the applicability of CS Unplugged beyond 
reasons of playfulness or creating intrigue” 
(Böckenhauer,  Komm, & Unger, 2018, p. 504).

•	 Unplugged activities are a useful approach to 
teach programming where “an Unplugged 
explanation or walk-through is used before 
getting on the computer to help students 
understand the design of a computer program 
or language elements” (Böckenhauer, Komm, 
& Unger, 2018, p. 507).  Interestingly, this is the 
way computer science was taught in the 1970s 
and 80s when the student to computer ratio 
was higher. Teachers had no other option but 
to teach CS in an unplugged way, often on 
a blackboard, with only the final step of the 
training conducted at  the computer. 

Bell and Vahrenhold conclude that, despite mixed 
evidence as to the impact of unplugged activities 
on student learning, the approach appears to be 
popular with teachers as a pedagogical approach. 
More research is needed to determine how best to 
use it effectively.



39

Key themes for future consideration

This research report has considered the evidence 
base for the teaching of computational thinking, 
including its relationship with coding, and reflected 
on some of the implications of this for schooling and 
school systems. 

Our research raises a number of important themes 
that we believe the NSW Department of Education 
could consider:

1.	 To what extent do the Australian Curriculum 
and NSW Syllabi appropriately cover the 
teaching of computational thinking and 
coding?

2.	 Does the terminology related to coding and 
computational thinking concepts need to be 
more clearly defined?

3.	 What resources need to be in place to support 
the teaching of computational thinking and 
coding in NSW and to what extent do we 
already have them?

4.	 Would initial teacher training benefit from a 
greater focus on computational thinking  and/
or coding?

5.	 Do we have sufficient understanding of 
the extent to which students are achieving 
proficiency in computational thinking, 
algorithmic thinking and familiarity with a 
range of contemporary technologies?

6.	 Is more work needed to reach agreement on 
appropriate pedagogies and age-appropriate 
teaching and assessment approaches?

7.	 Are current learning continua/progressions of 
computational thinking or coding concepts 
adequate and informed by current research 
and theory?

8.	 Is coding an effective instrument to teach 
computational thinking? Are some approaches 
more successful and what do these involve?

9.	 What is the capacity for computational 
thinking to be developed in and integrated 
with other key learning areas such as maths 
and biology?

10.	 What do effective assessment and success 
metrics look like in judging the extent to 
which students are attaining proficiency in 
computational thinking?



40

Abbreviations
ACA – Australian Computing Academy

ACARA - Australian Curriculum, Assessment and 
Reporting Authority

CAS – Computing at School

CEG – Computer Education Group

CPD – Continuing Professional Development

CS Unplugged – Computer Science Unplugged

CSER – Computer Science Education Research

CSIRAC - Council for Scientific and Industrial 
Research Automatic Computer

DER - Digital Education Revolution

EU – European Union

ICT – Information and Communications Technology

ICTENSW – ICT Educators NSW

ICSEA – Index of Community Socio-Educational 
Advantage

IT – Information Technology

MONECS - Monash Educational Computer System

MOOC – Massive Open Online Course

NAPLAN – National Assessment Program Literacy 
and Numeracy

NAP-ICT - National Assessment Program-Information 
and Communication Technology 

NESA – NSW Education Standards Authority

NoE – Network of Teaching Excellence

NSF – National Science Federation (US)

OECD - Organisation for Economic Co-operation and 
Development

PC – personal computer

PISA – Programme for International Student 
Assessment

STEM – Science, Technology, Engineering and 
Mathematics

TCC – Teachers Can Code



41

Bibliography
Académie des Sciences. (2013). L'enseignement de 
l'informatique en France - Il est urgent de ne plus 
attendre.

ACARA. Digital Technologies subject rationale. 
Retrieved from https://www.australiancurriculum.edu.
au/f-10-curriculum/technologies/digital-technologies/
rationale/. Last accessed 16.7.2018

ACARA Glossary. Computational Thinking, 
Retrieved from https://www.australiancurriculum.
edu.au/f-10-curriculum/technologies//
Glossary/?term=Computational+thinking. Last 
accessed 16.7.2018

ACARA (2015). National Assessment Program – ICT 
Literacy, Years 6 & 10, Report 2014. Retrieved from 
https://www.nap.edu.au/_resources/D15_8761__NAP-
ICT_2014_Public_Report_Final.pdf 

Alexander, P., Trakhman, L. (2017). The enduring power 
of print for learning in a digital world. Retrieved from 
http://theconversation.com/the-enduring-power-of-
print-for-learning-in-a-digital-world-84352 

Australian Computing Academy Website (2018). 
Retrieved from https://aca.edu.au 

Australian Government, Department of Education 
and Training (2017). Undergraduate Applications, 
Offers and Acceptances 2017 Report. Retrieved 
from https://docs.education.gov.au/system/files/doc/
other/undergraduate_applications_offers_and_
acceptances_2017.pdf 

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., 
Engelhardt, K. (2016). Developing computational 
thinking in compulsory education – Implications 
for policy and practice; EUR 28295 EN; 
doi:10.2791/792158, Retrieved from http://publications.
jrc.ec.europa.eu/repository/bitstream/JRC104188/
jrc104188_computhinkreport.pdf 

Böckenhauer,  Komm & Unger (2018) Adventures 
Between Lower Bounds and Higher Altitudes. 
Springer, ISBN 978-3-319-98355-4 

Computer Science Unplugged. Retrieved from 
https://csunplugged.org/en/. Last accessed 16.7.2018

DEEWR (2013). Digital Education Revolution Program 
Review. Retrieved from https://docs.education.gov.au/
documents/digital-education-revolution-program-
review 

Department of Education – Procurement Solutions 
Directorate (2018). Request for Quote, Coding and 
computational thinking research report, Part A 
Department of Education and Training. Digital 
Education Revolution. Retrieved from https://docs.
education.gov.au/category/deewr-program-group/
digital-education-revolution  

Department of Education: Western Australian 
Curriculum Support (2018). Teachers Can 
Code. Retrieved from http://det.wa.edu.au/
curriculumsupport/detcms/school-support-
programs/curriculum-support/news-items/
expression-of-interest-lead-teachers-for-teachers-
can-code-professional-learning-program.en 

Deruy (2017). In Finland, Kids Learn Computer 
Science Without Computers. Retrieved from 
https://www.theatlantic.com/education/
archive/2017/02/teaching-computer-science-without-
computers/517548/ 

Digital Technologies Hub. Resources. Retrieved from 
http://www.digitaltechnologieshub.edu.au/search#/
site-search?cnttype=resource 

Digital Technologies in focus. Retrieved from http://
www.acara.edu.au/curriculum/learning-areas-
subjects/technologies/digital-technologies-in-focus-
dtif-project 

Everett, C. (2018). Is the UK’s computing curriculum 
too focused on coding? Retrieved from https://www.
computerweekly.com/feature/Is-the-UKs-computing-
curriculum-too-focused-on-coding

Falkner, K. (2017). A Look At It And Engineering 
Enrolments In Australia – Updated! Retrieved from 
https://blogs.adelaide.edu.au/cser/2017/02/15/a-
look-at-it-and-engineering-enrolments-in-australia-
updated/ 



42

Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold, 
J., McGettrick, A., ... Drechsler, M. (2013). Informatics 
education: Europe cannot afford to miss the boat (p. 
21). Joint Informatics Europe & ACM Europe Working 
Group on Informatics Education.

Gartner, Gartner Hype Cycle. Retrieved from 
https://www.gartner.com/technology/research/
methodologies/hype-cycle.jsp Last accessed 18.7.2018

Guzdial, M. (2017). In Finland, Teaching Computer 
Science across the Curriculum, Retrieved from 
https://computinged.wordpress.com/2017/03/06/
in-finland-teaching-computer-science-across-the-
curriculum/ 

Grover, S. (2013). OPINION: Learning to Code Isn't 
Enough. Retrieved from https://www.edsurge.com/
news/2013-05-28-opinion-learning-to-code-isn-t-
enough 

Information Technology Foundation for Education 
(2018). Technology education has reached majority 
of Estonian schools by support of the ProgeTiger 
program. Retrieved from https://www.hitsa.ee/
about-us/news/technology-education-has-reached-
majority-of-estonian-schools-by-support-of-the-
progetiger-program 

Lockwood, J., Mooney, A. (2017). Computational 
Thinking in Education: Where does it fit? A systematic 
literary review. Department of Computer Science, 
Maynooth University, Maynooth, Co. Kildare, Ireland, 
Retrieved from https://arxiv.org/pdf/1703.07659.pdf 

Learning Environments research group (2015). Coding 
in school: Finland takes lead in Europe. Retrieved 
from https://legroup.aalto.fi/2015/11/coding-in-school-
finland-takes-lead-in-europe/ 

Loble, L., Creenaune, T., Hayes, J. (2017) Future 
Frontiers. Education for an AI World. Melbourne 
University Press. A Conversation About 
Computational Thinking With Jeannette M Wing, pp 
127-140

Mohaghegh, M, McCauley, M. (2016). Computational 
Thinking: The Skill Set of the 21st Century.  
International Journal of Computer Science and 

Information Technologies, Vol. 7 (3), 1524-1530

NSW Education Standards Authority, Digital 
Technologies And ICT Resources. Retrieved from 
http://educationstandards.nsw.edu.au/wps/
portal/nesa/k-10/learning-areas/technologies/
coding-across-the-curriculum/!ut/p/z1/pZCx
DoIwEIYfqXfXUnDsILTQpIMi2MUwmSaKDs
bnt-ngoIgY_-2S77vcf8yznvlxuIfjcAuXcTjFee_
lQRgNwIEslCRA8R1UK-
PqTCLrEkAKJWqBDeQFgtoK0WQlIFjJ_D--
4T_6rkq-Q0l1Tq7NlvnwIQqW-TOAn1_fMZ-
QZ4OC1rEBb7TFjSXr-Csw8eJZwLxtmHjStzOv5zamh2
CCegAdpnQ4/#fn1. Last accessed 16.7.2018 

OECD (2015). Students, Computers and 
Learning: Making the Connection, PISA, OECD 
Publishing, Paris, Retrieved from https://doi.
org/10.1787/9789264239555-en

ProgeTiger Program 2015–2017 Report. Retrieved 
from https://www.hitsa.ee/it-education/educational-
programmes/progetiger

Resnick et al.  (2009) Scratch: Programming for All, 
Communications of the ACM, Vol. 52, No. 11. Retrieved 
from https://dl.acm.org/citation.cfm?id=1592779   

Royal Society (2012). Shut down or restart? The way 
forward for computing in UK schools. Retrieved 
from https://royalsociety.org/~/media/education/
computing-in-schools/2012-01-12-computing-in-
schools.pdf 

Sentance, S., Csizmadia, A. (2017). Computing in 
the curriculum: Challenges and strategies from a 
teacher’s perspective. Education and Information 
Technologies, 22(2), 469-495, Retrieved from 
https://kclpure.kcl.ac.uk/portal/files/51589206/
ComputingInTheCurriculum2016.pdf 

Straw, S., Bamford, S., Styles, B. (2017). Randomised 
Controlled Trial and Process https://www.nfer.ac.uk/
publications/CODE01/CODE01.pdf



43

Schulz, K., Fuda, B. (2018). Australian Computing 
Academy. Visual or Text Programming? Retrieved 
from https://blog.aca.edu.au/visual-or-text-
programming-c75046312ff7

Tatnall, A., Davey, B. (2004). Streams in the History 
of Computer Education in Australia. History of 
Computing in Education. J. Impagliazzo and Lee, J. A. 
N. Assinippi Park, Massachusetts, Kluwer Academic 
Publishers / IFIP: 83-90. Retrieved from goo.gl/ae7jQq

uCube. Department of Education and Training, 
Retrieved from http://highereducationstatistics.
education.gov.au,  Last accessed 18.7.2018

University of Adelaide. Lending Library. Retrieved 
from https://csermoocs.adelaide.edu.au/library/ last 
accessed 16.7.2018 

University of Adelaide. MOOCs (Massively Open 
Online Courses). Retrieved from https://csermoocs.
adelaide.edu.au/moocs/  Last accessed 16.7.2018 

Uk Government (2013). National curriculum in 
England: computing programs of study. Retrieved 
from https://www.gov.uk/government/publications/
national-curriculum-in-england-computing-
programmes-of-study/national-curriculum-in-
england-computing-programmes-of-study 

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. 
(2010). Running On Empty: The Failure to Teach K–12 
Computer Science in the Digital Age. ACM&CSTA.

Wing, J. (2010) Computational Thinking: What 
and Why? Retrieved from https://www.cs.cmu.
edu/~CompThink/resources/TheLinkWing.pdf  

ZDNet (2013) Australian government quietly ends 
laptops in schools program. Retrieved from https://
www.zdnet.com/article/australian-government-
quietly-ends-laptops-in-schools-program/ 



44

©
©

NSW Department of Education © 2019

Report commissioned by the NSW Department of Education (futurefrontiers@det.nsw.edu.au).


	Introduction
	Overview
	About this Report
	Part 1: Defining computational thinking and coding in Australian education contexts 

	Computational Thinking
	Coding
	Digital Technologies Curricula in Australia and NSW
	The Australian Curriculum: Digital Technologies
	NSW Syllabus

	Part 2: The Australian and global contexts: The increasing importance of computational thinking and coding 

	Historical context
	Australian perspective
	Global perspective


	Relating historical success factors to the present
	Appropriate programming language tools and resources
	Proper use of computers
	Purposeful context that students can identify with
	Teacher competence and confidence 
	Summary
	The tertiary sector and the IT industry 
	Dot-Com Boom (and bust)
	University enrolment trends
	Jobs
	Summary
	European Union policy analysis
	Student assessment
	Implementation in national curricula 
	Implementation framework


	International case studies 
	Estonia
	Finland
	United Kingdom
	South Korea
	Summary

	Part 3: Implications for teaching and learning

	Implications for teaching and teacher professional development
	Professional development of teachers in computational thinking in Australia
	Unpacking the Australian Curriculum: Digital Technologies
	Resources
	Train the trainer
	Online Courses
	Supporting disadvantaged schools
	Professional development of teachers in coding and computational thinking in the US
	Professional development of teachers in coding and computational thinking in England
	Lessons for Australia
	Implications for student learning outcomes
	Pedagogy
	The role of computers and laptops
	Measuring Computational thinking 
	Interpretation 
	Key themes for future consideration


	Bibliography



