
education.nsw.gov.au

A conversation about Computational Thinking | Jeannette M Wing

1

O C C A S I O N A L P A P E R S E R I E S

A Conversation about
Computational Thinking

Jeanette M Wing

A paper commissioned by the NSW Department of Education

education.nsw.gov.au

A conversation about Computational Thinking | Jeannette M Wing

2

ABOUT THE AUTHOR

Jeannette M. Wing is Avanessians
Director of the Data Science
Institute and Professor of
Computer Science at Columbia
University. She has been
Corporate Vice President,
Microsoft Research; Department
Head of Computer Science,
Carnegie Mellon University; and
Assistant Director of Computer
and Information Science and
Engineering, National Science
Foundation.

EDUCATION: FUTURE FRONTIERS is an initiative of the NSW
Department of Education exploring the implications of
developments in AI and automation for education. As part
of the Education: Future Frontiers Occasional Paper series,
the Department has commissioned essays by distinguished
authors to stimulate debate and discussion about AI,
education and 21st century skill needs. The views expressed
in these essays are solely those of the authors.

education.nsw.gov.au

A conversation about Computational Thinking | Jeannette M Wing

3

The following is an edited conversation about
computational thinking with Jeannette Wing.

What is computational thinking and why
does it matter?

I defne computational thinking as the thought
processes involved in formulating a problem
and expressing its solution(s) in such a way that a
computer—human or machine—can efectively carry
it out.1

I believe that the skills one learns as a computer
scientist are incredibly important for anyone working
in any job in today’s society. It does not matter what
feld you study, what profession you pursue, or even
in what sector you practise. I see this need in spades
in industry. I’m also seeing that many colleges and
universities around the world have embraced this
belief and realised that the job opportunities for their
graduates demand computational thinking. It’s more
than programming skills that employers are asking
of their employees. Ten years ago it might have been
a harder argument to make, but now it’s a given.
Anyone who graduates knowing computational
thinking or with the skills of a computer scientist will
have an advantage over those who don’t and they
will be more competitive in the job market.

Computational thinking is sometimes
equated with coding or programming.
How can the ‘computational thinking =
programming’ trap be avoided?

Computational thinking is more conceptual than
programming. In my defnition, I deliberately use the
terms ‘thought processes’ for formulating a problem
and expressing a solution—it’s what you do in your
head. Programming is a way to make the solution
concrete so that it can be run on a computer that
is a physical machine. So computational thinking
frst and foremost is what humans do. Programming
is an expression of a solution that a machine can
understand. Of course, when you are programming
you are using computational thinking, but the
opposite is not true: you can be doing computational
thinking and not be programming at all.

You have promoted computational
thinking for over a decade now.Are you
surprised at how infuential computational
thinking has become in education?

I’m not surprised it has become infuential in higher
education. When I was at the National Science
Foundation ten years ago, I helped create a program
called Cyber Enabled Discovery and Innovation. It
was all about computational thinking for scientists
and engineers. So even ten years ago, it was already a
given that computing was going to be necessary for
conducting research in any science and engineering
feld. This recognition meant that graduate students
were going to have to learn computational thinking
regardless of what feld they studied. Also, ten years
ago, for undergraduates I was promoting the idea
that introductory computer science courses should
focus more on the higher-level concepts of computer
science rather than focus primarily on learning a
particular programming language or only learning
how to write code. That idea was already in the air
so I’m not surprised that computational thinking
has taken over at the undergraduate level. Now such
courses are the most popular on many campuses.

I am surprised at the pace at which we have made
inroads at the K-12 level. I need to thank the advisory
committee I had while I was at the National Science
Foundation for encouraging me to look at K-12,
especially early grade levels. While I was promoting
computational thinking across the foundation, the
advisory committee asked, ‘Why don’t you tackle
K-12?’, and I said, ‘You’ve got to be kidding! I know
nothing about K-12 education’. Moreover, in the
US, doing anything in the K-12 space is a huge
undertaking. One reason is that K-12 is extremely
decentralised in the US. There are 10000 school
districts and to efect any kind of national change you
have to go to each district one by one. I didn’t fathom
tackling that challenge! However, being at the
National Science Foundation, I did have a national
platform; moreover, the foundation has a directorate
focused on education. Thus, I was able to leverage my
position at the National Science Foundation in ways
that did move the needle.

education.nsw.gov.au

A conversation about Computational Thinking | Jeannette M Wing

4

Specifcally, the lever we used was advanced
placement courses, which are college-level courses
taken by high school students in order to get college
credit. We worked with the Educational Testing
Service and the academic community to create
a new advanced placement course in computer
science. We started to promote this new course as
one which high schools should ofer—in addition to
the existing course, which was primarily focused
on programming. At the same time, colleges and
universities were changing their frst-year and
introductory computer science courses. By ensuring
that the curriculum of the new advanced placement
course matched the new college-level curricula,
we could efect a change across K-12 in the US in
a scalable way. It was an alignment of stars and
perfect timing. Exploiting this lever made a dramatic
diference above and below.

But to be honest, the real credit for a lot of what
was happening at the K-12 level is due to the entire
computing community working with educators,
especially teachers in high school and elementary
school, and even with the Department of Education.

Meanwhile, computing technology continued to
pervade our everyday lives. Young children took
technology for granted and were growing up more
tech-savvy than their parents. People recognised
the importance of having K-12 students learn
computing skills. At the same time, companies in
the IT industry, such as Microsoft, Facebook, Google,
Apple and so on, were desperately trying to hire
people with computing skills. The demand far
outweighed the supply. These companies realised
they needed to look one level earlier in the pipeline
and to encourage more students to take computer
science in high school. The huge demand for talent
by industry helped drive the awareness of computer
science education at the K-12 level.

When I frst started talking about computer science
at the K-12 level, I said that there are two very
fundamental questions that need further research
by the education community. The frst is, what are
the concepts to teach and when? My analogy is
mathematics, where we fgured out that by the time

you are fve years old you have enough mathematical
sophistication to understand numbers and relations,
such as greater than and less than; by the time you
are twelve years old, you have the mathematical
sophistication to learn algebra; and by the time you
are eighteen years old, you have the mathematical
sophistication to learn calculus. Somehow we have
learned from teaching mathematics for centuries
and studying mathematics education both how the
brain develops and gains the sophistication to do
mathematical reasoning, and how can we align the
teaching of mathematical concepts to that growth in
reasoning capability.

So, ten years ago, my question to the computer
science community working with educators was
‘What is the analogy in computer science?’. This
question had never been asked before. I strongly
believe it’s important to do research to fgure this
out. In the beginning, I was pretty adamant that
we should understand the science underlying how
to teach computer science to young children—to
do the research—before we go out and invent a lot
of curricula that are not grounded in science. But
there was so much momentum around me that
people just went out and started inventing curricula.
Fortunately, the education community is pursuing
this line of research now. Also, new technology, such
as massive online learning, enables us to do large-
scale experimentation as part of the needed research
in education.

There defnitely is a lot we don’t know that will take
time to fgure out. Analogously, we still have what
we call in the US ‘maths wars’, where we continue to
tinker with teaching mathematics in K-12. I anticipate
that, decades from now, we will still be trying to fgure
out how best to teach computer science to K-12
students.

The UK, through their Computing At School initiative,
has introduced computing at all levels. It is a very
courageous efort. The UK is my exemplar. I hope
countries around the globe look to the UK as a leader
and learn from them as they push the frontiers of
education in computer science.

The second fundamental question is how best and

education.nsw.gov.au

A conversation about Computational Thinking | Jeannette M Wing

5

when should we use ‘the computer’ in the classroom
to teach and reinforce computational thinking
concepts? Here my concern is throwing technology
into the classroom and thinking the students are
going to learn anything, let alone computing. We
need further research on how computing technology
can be used efectively for learning and not hinder
the learning process. We also need research on how
such technology can help reinforce the learning of
computational thinking specifcally.

Some commentators have argued that
computational thinking mainly benefts
students in statistical or scientifc
environments, and that the benefts
of computational thinking in other
disciplines such as creative arts or
humanities have not been empirically
substantiated. Do you have thoughts on
this?

It’s a fair statement to say the benefts of
computational thinking in arts, humanities and social
sciences have not been ‘empirically substantiated’,
primarily because it’s too early to tell—only now are
researchers exploring the power of computation in
these subjects. However, when I look at felds such
as economics and social science specifcally, and
even the humanities, computational methods are
transforming these felds. New programs around
the country and around the world recognise the
prevalence and importance of the digitisation of
data. With the help of computational power, you
can do a lot with digitised data that you couldn’t do
as a human being. And so the digitisation of data is
bringing computational methods to all felds where
you can search, manipulate, analyse and visualise
the data. These methods will enable us to make
new discoveries, to fnd patterns and to suggest new
questions that people would never have thought to
ask before.

For example at Columbia University we have a history
professor who has been looking at massive amounts

of declassifed government documents and analysing
them in new ways. By using computational methods
and tools, he is able to make new discoveries about
law, policy and history. As a human being, you could
not make these discoveries on your own because you
could not read all the data, you could not digest all
the data, you could not remember everything you’ve
looked at, and so, you could not fnd specifc patterns
across all those documents. And that’s just an easy
example. At Columbia and elsewhere, people in all
felds are recognising the value of data to making
new discoveries and making predictions. I was just
talking to a colleague in Economics this morning
and he was rattling of many examples of his work
with data, all of which have important implications
for economic policy, decision-making and prediction.
We are at the tip of an iceberg considering all the
data that is being digitised and people in all felds
now having access to online datasets that didn’t exist
before.

More specifc to the creative arts is the ability to use
technology to digitise artefacts, media and structures.
Here I’m talking about emerging felds such as digital
art, digital humanities and digital archaeology. For
example, we can digitise historic relics—what you
might see in museums—and then provide anyone
around the world access to explore these artefacts.
You don’t have to travel to a remote place to enjoy
the beauty and culture of other regions around
the world. It’s a diferent kind of globalisation if you
like—it’s one way to bring diferent cultures together
through shared access of digital data.

Finally, I would like to add that computational
thinking is itself a very creative process. As with any
problem-solving, it relies on human ingenuity, fashes
of insight and taste in design.

You touched on this earlier when we were
talking about the K-12 computational
thinking concepts. One of the challenges
is how can it be measured or assessed,
particularly in non-computing disciplines.

education.nsw.gov.au

A conversation about Computational Thinking | Jeannette M Wing

6

What do you see as the way forward on
this?

Any educator would ask this standard question:
How do we measure or assess whether one has
learned a concept or not? Early on, I encouraged
computer scientists to work with education, learning
and cognitive scientists to fgure out answers to this
question. When I teach college students, I know how
I might test a particular concept such as whether
someone can write and analyse an algorithm, or
whether someone can look at code and argue
whether it does the right thing. There are various
ways to test and measure the understanding of
computational concepts. The bigger picture is still up
in the air: How do we measure and assess at the K-12
level?

That’s why, as much as I am very excited to see the
progress we have made in the K-12 space, we need
to temper our enthusiasm because we are still
exploring and experimenting. We really do not know
when is the right age to teach what concept or what
is the degree of reasoning capability a child needs
to learn a given concept. I don’t have good answers
to these questions, but as long as the education and
computer scientists are working together, we will
make progress.

What are your thoughts on the growing
use of and interest in AI and data science?

The progress we are witnessing today in AI is due
to the convergence of ‘big data’ and ‘big compute’.
What do I mean by that? The AI-based algorithms
that people use routinely today in industry are
successful because they can be fed with lots and lots
of data, so that’s the ‘big data’ concept. The second
part is that these AI-based algorithms are compute
hogs, meaning that they take lots and lots of
processing capability that is best run in the cloud. The
cloud provides huge numbers of servers, including
huge numbers of central processing units, graphical
processing units and other kinds of specialised
processors. AI is successful today because algorithms
can be fed with lots of data and can be run on these

huge computing clusters.

Advances in AI today come from having data. Thus,
in terms of the future, data science is even more
fundamental to society’s digital transformation than
just AI. The amount of data we produce continues
to grow exponentially. Since we are going to be
generating more and more data, we will be analysing
more and more data. More data will certainly
empower AI to be more sophisticated and more
capable. This trend is not going to end, and so we
need to adapt to it.

We also need to think about the consequences and
implications of more and more of our world being
driven by AI-based software. This world is very diferent
from the world of today or yesterday where we had
software all around but it was designed to be as
predictable as possible. For AI-based algorithms the
answers are probabilistic. A prediction or classifcation
by an algorithm is made with some associated
probability, leaving room for uncertainty. Thus, given
the output of these AI-based algorithms, any decision
you make or action you take is based on likelihoods.
Probabilistic reasoning is very diferent from purely
logical reasoning, the basis of traditional computing:
0s and 1s, on or of, right or wrong, yes or no.

We need to embrace uncertainty. There is uncertainty
everywhere. There is uncertainty in datasets: they can
have missing, imprecise or inaccurate values; they
can have noise. Mother nature is unpredictable, the
physical world is unpredictable and humans are
unpredictable. Yet our software systems are going to
have to operate in these unpredictable environments
and interact with each other and with us humans.
The way that we embrace uncertainty in computer
science is to use probabilistic reasoning. Probabilistic
and statistical reasoning underlies all modern
machine-learning techniques and tools. Since
these technologies are not going away, we need
to consider what needs to be taught in school. We
should emphasise not just discrete mathematics but
also probability and statistics. Expecting knowledge
in these subjects has implications in terms of school
education.

education.nsw.gov.au

A conversation about Computational Thinking | Jeannette M Wing

7

In a 2006 article you
wrote,‘Computational thinking is a way
humans solve problems; it is not trying
to get humans to think like computers’.2
Eleven years later, with the rapid
development of AI, it seems we are
getting closer to making computers think
like humans. Is it likely that computers
will soon do computational thinking
better than humans; for example, self-
coding AI?

It’s a great question and the whole idea of self-
coding AI is a new, active area of research. It helps
to distinguish between the AI we can do today
and the holy grail of AI. In a 1965 conference at
Dartmouth, very prominent computer scientists got
together and founded the whole area of AI. Their
vision was to build a machine that could mimic
human intelligence. This vision is the holy grail. Very
early on, however, they realised that the general AI
goal was way too big a problem to tackle. Instead,
the research community divided the intelligence of
humans into subcategories: speech, vision, language,
planning, decision-making, mobility (e.g., walking or
manipulation; for instance, with your fngers) etc. Each
of those subcategories then became its own big feld
within computer science.

It was only in the early 2000s that all of these
separate strands of AI started coming together
because many of them were using common
techniques, specifcally machine learning. If you use
the same technique for vision as you do for speech,
as you do for natural language processing, as you do
for machine translation, as you do for robotics, then
all of a sudden there is something quite tantalising in
thinking we can go after the ‘general AI problem’.

To be honest, solving general AI is really far of, if you
look at what we can do with today’s AI. We can train
a machine to process images to recognise objects;
it’s a human-level task, but it is just a single task that
humans happen to be good at. We can also use
loads of data and compute power to train a model
that can recognise English speech; it’s a human-level
task, but again it is just a single task that a human

can do. We cannot build a machine today that can
do all of the things that a human can do all at once.
We can build little machines, each of which can do
a single task that humans are good at. So we are far
from solving the general AI problem.

Even so, some machines are as good as humans at
performing some tasks, such as object recognition or
speech recognition. Some, such as the Go computer
program that beats human Go players, are even
better. But most of our current AI machines or agents
are still worse than humans. So we don’t have general
AI yet, and even most human-level tasks that we are
nailing today with machines are still not as well done
as by humans. In short, we have a long way to go
before we have anything resembling a machine that
has the general intelligence of humans.

To focus specifcally on self-coding AI, there is
defnitely interesting research going on at Microsoft
Research and other places, where people are
using AI techniques such as machine learning, and
deep learning specifcally, to synthesise code and
programs. Once we can succeed at this task, an
interesting question is whether these AI agents will
replace programmers as we know them today. I
think replacing programmers is a ways of because
current research is barely scratching the surface,
though the results show feasibility. Even so, the task
of programming is only one small part of software
engineering, what is practised in industry. Much
individual human thought, human-to-human
communication and teamwork are needed to
build large software systems. I don’t see software
engineering jobs being replaced anytime soon.

You asked me about whether computers could
do computational thinking better than humans.
Given that computational thinking is really about
tapping into the creativity of humans to understand
problems and express solutions so that a computer
can carry them out, I don’t think we are there yet.
Perhaps what you are really asking is: Can these AI
agents think creatively? It’s hard to do technically.
More difcult is to defne what creativity is, let alone
measure it.

education.nsw.gov.au

A conversation about Computational Thinking | Jeannette M Wing

8

Accenture released fndings from a global
study earlier this year outlining the
potential jobs that could be created by
AI.3 It highlighted trainers, explainers and
sustainers of AI. Do you think education
systems are focused enough on
developing the computational thinking
that students will need for the jobs of the
future which will require them to work
alongside machines?

This question needs to be unpacked because there
are a lot of questions within it. First of all, do I think
that education systems are focused enough on
developing computational thinking? As we discussed,
more and more countries are looking at their K-12
education and trying to promote the teaching of
computer science. This transformation will happen
over time because of demand and because these
skills are teachable to K-12 students.

About jobs of the future, it is true that advances
in AI are going to automate some jobs that today
are done by humans—no question. Technology has
always caused the loss of some jobs, but it has also
created new kinds of jobs. We should be thinking
about what those new jobs might be and what are
the skills we need to teach children today or retrain
current workers to learn so that they can do these
new jobs. A relevant economic and societal concern
is that as automation takes over a job previously done
by a human, the person who no longer has a job may
not have the new skills for the new jobs or have the
desire to learn the new skills needed. It’s important
for society to prepare students properly for the new
jobs that will emerge, and also to think carefully
about how to encourage and help people who have
lost their jobs to automation to learn new skills.

The third part of the question has to do with humans
working alongside machines. Machines are never
going to replace humans completely, but more and
more humans are going to have to work alongside
smarter and more capable machines. For them to
work efectively together, humans and machines will
need to communicate at a higher level of discourse

than they do today. Right now, machines produce
answers, perhaps probabilistic, that a human needs
to interpret and then make a decision or take some
action. If the human doesn’t understand how to
properly interpret the answer the machine produces,
then something can go wrong. Similarly, the way
in which humans communicate with machines
requires either simple spoken commands or low-
level instructions written in a machine-interpretable
language. Raising the level of communication
between humans and machines is a research
problem.

Another emerging phenomenon is the combination
of humans and machines that can solve problems
that neither can solve alone. This combination
requires humans and machines to understand what
each other can and cannot do and to understand
what each other knows and does not know. A nice
example of this combination is a kind of robot called
CoBot, which a colleague of mine at Carnegie Mellon
University built. It’s called a CoBot because the robot
knows what it doesn’t know, and when it needs help,
it turns to the human and asks for help. Specifcally,
this CoBot can roam the hallways, deliver water and
mail, and escort visitors to their host. But when it
gets to an elevator door, since it doesn’t have hands,
it needs help from a human to press the elevator
button. So it stops and turns its cute robot head to
the human alongside it and says, ‘Would you please
press the elevator button?’. The elevator opens and
the CoBot walks into it. And then someone has to
push the foor button. This kind of interaction that the
CoBot has with a human shows that the robot knows
what it doesn’t know, and when it needs help it asks
the human.

education.nsw.gov.au

A conversation about Computational Thinking | Jeannette M Wing

9

Notes

1.	 Defnition with input from Al Aho at Columbia
University, Jan Cuny at the National Science
Foundation and Larry Snyder at the University of
Washington. For further information, see: Wing,
Jeannette M (2014). Computational Thinking
Benefits Society. Social Issues in Computing,
40th Anniversary Blog, 10 January. http://
socialissues.cs.toronto.edu/index.html%3Fp=279.
html

2.	 �Wing, JM (2006) Computational Thinking.
Communications of the ACM, 49 (3): 33–5.

3.	 Wilson, HJ, P Daugherty and N Bianzino. The
Jobs that Artifcial Intelligence Will Create. MIT
Sloan Management Review, 58 (4): 14–17.

education.nsw.gov.au

A conversation about Computational Thinking | Jeannette M Wing

10

© February 2019.

Education: Future Frontiers | Occasional Paper Series

Accessibility Report

		Filename:

		Computational Conversation_1_A.pdf

		Report created by:

		AEWEN1

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

